
Understanding Windows

Lateral Movements

ATTL4S & ElephantSe4l

Understanding Windows

Lateral Movements

ATTL4S & ElephantSe4l

Understanding Windows

User Impersonation

ATTL4S & ElephantSe4l

attl4s.github.io

ATTL4S

ÅDaniel López Jiménez

ÅTwitter: @DaniLJ94

ÅGitHub: @ATTL4S

ÅYoutube: ATTL4S

ÅLoves Windowsand Active Directory security

ÅManaging Security Consultant at NCC Group

ÅAssociate Teacher at Universidad Castilla-La Mancha(MCSI)

attl4s.github.io

ElephantSe4l

ÅManuel León

ÅTwitter: @ElephantSe4l

ÅGitHub: @ElephantSe4l

ÅVery curious, enjoys Windows Internals and Code Reviewing

ÅExperienced Programmer

ÅSecurity Consultant at NCC Group

attl4s.github.io

The aim of this presentation is understanding the art of user impersonationin Windows

systems. This knowledge will be handy when performing lateral movements and other

interesting tasks within Windows and Active Directory networks

UserA UserB
HostA

UserBHostB

Impersonation

attl4s.github.io

Agenda

1. Windows Authentication

ÅWays of authentication and main Windows authentication components

2. User Impersonation

ÅPlaying with Windows authentication and stolen credentials

3. Moving with the SSPI

ÅExamples of how to move laterally through SSPI authentication

attl4s.github.io

Windows Authentication

attl4s.github.io

Ways of Authentication

ÅThere are different ways to authenticate on a Windows system, and each has its
implications

ÅAuthenticating with local usersis not the same as authenticating with domain
users

ÅLikewise, authenticating to a computer physically(in person) has different
requirements than doing so through the network

attl4s.github.io

Local Authentication

ÅLocal users are only present in a specific system
ÅOnly the system knows about them (e.g. ComputerA\Charles)

ÅTwosystemsmayhaveuserswith similar usernamesand passwords
ÅComputerA\Charles and ComputerB\Charles

ÅRecords of local users are stored within the Security Account Manager(SAM)
database
ÅWindows verifies such records when someone tries to authenticate to the system

attl4s.github.io

Local Authentication (cont.)

HostA\ATTL4S

SAM

HostA

1. Hey I am HostA\attl4s

3. OK!

2. Data is verified

attl4s.github.io

Domain Authentication

ÅDomain users and groups are present in a specific AD domain

ÅAll domain-joined systems (or systems from trusted domains) will know how to
handle authentication
ÅThey will essentially delegate this task to an authentication server (Domain Controller)

ÅDomain user and computer records are stored within the NT Directory Services
(NTDS) database
ÅDomain Controllers verify such records when an identity tries to authenticate

attl4s.github.io

Domain Authentication (cont.)

Domain\ATTL4S Domain\HostA

1. I am Domain\ATTL4S

Domain\DC01

2. Delegate Auth

NTDS

3. Data is verified

4. OK!5. OK!

attl4s.github.io

Physical Authentication

ÅWhen physically in front of a Windows computer, if you have a valid account, you
should be able to log in

ÅThis applies both to local users and domain users (as long as the target system
knows about the account)

ÅIn default configurations of Active Directory, any domain usercan physically log in
into any domain computer

attl4s.github.io

Remote Authentication

ÅUnlike physical, remote authentications require privilegesby default
Å.ŜƛƴƎ ƳŜƳōŜǊ ƻŦ !ŘƳƛƴƛǎǘǊŀǘƻǊǎΣ wŜƳƻǘŜ 5ŜǎƪǘƻǇ ¦ǎŜǊǎΧ

ÅWhen doing a Pentest, we are nottypically going to be in a position to perform
physical authentications

ÅIn terms of moving laterally within a network, we usually care about remote
authentications

HostA\UserA HostA\UserB

Domain\UserA

* NeedsPrivs!

* NeedsPrivs!

Domain\UserB

attl4s.github.io

Windows Authentication

ÅIn order to understand the art of impersonating users, it is important to be
familiar with the Windows authentication mechanism

ÅIn the following sections we will examine:

ÅAuthentication Packages (APs) / Security Support Providers (SSPs)

ÅInteractive and Non-Interactive Authentications

ÅLogon Sessions

ÅAccess Tokens

attl4s.github.io

Authentication Packages

attl4s.github.io

Authentication Packages

ÅAuthentication Packages (APs) authenticate Windows users by analysingtheir
logon data
ÅAlso known as Security Support Providers (SSP)

ÅDifferent APs provide support for a variety of logon processesand authentication
protocols

ÅAPs come in the form of DLLs, which are loaded and used by the Local Security
Authority (LSA) component

https://learn.microsoft.com/en-us/windows/win32/secauthn/authentication-packages

attl4s.github.io

Authentication Packages (cont.)

ÅAPs present by default in Windows:

https://learn.microsoft.com/en-us/windows/win32/secauthn/ssp-packages-provided-by-microsoft

attl4s.github.io

Authentication Packages (cont.)

ÅAPs provide the logic needed for Windows to act as a clientand as an
authentication server

ÅClient - Want to connect to a service with Windows authentication?
ÅWindows will transparently select the appropriate Authentication Package and leverage your

cached credentials

ÅServer - Your service/program supports Windows authentication?
ÅWindows will transparently authenticate clients with the appropriate Authentication Package and

credential database

attl4s.github.io

Local Security Authority

ÅAs shown in the image below, the LSA component orchestrates everything

Windows Internals, Part1

attl4s.github.io

SSP Interface

ÅMicrosoft provides the Security Support Provider Interface (SSPI) to easily
integrate applications with this authentication system

https://ldapwiki.com/wiki/Security%20Support%20Provider%20Interface

attl4s.github.iohttps://learn.microsoft.com/en-us/windows/win32/secauthn/authentication-functions

SSP Interface (cont.)

attl4s.github.io

Successful Authentication

ÅWhen an authentication succeeds, the selected Authentication Package carries
out two important tasks:

1. Creates a new logon sessionwithin the system

2. Provides security informationabout the authenticated user to LSA

ÅLSA uses that information to create an Access TokenǿƘƛŎƘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ǳǎŜǊΩǎ
local security contexton that system

attl4s.github.io

LSAAuth Auth package

Logon Session

Security information

Creates

Provides

TOKEN

User SID

Logon Session ID

Integrity

Groups

Χ

Creates

UserA HostA

Physical

Remote

NTLM

Kerberos

attl4s.github.io

Interactive and Non -Interactive

Authentications

attl4s.github.io

Yet Another Differentiation

ÅLocal/domain and physical/remote were not enough
ÅIt is also important to differentiate between interactive and non-interactiveauthentications!

ÅMicrosoft differentiates these based on whether the user inputs its logon data or
not

ÅUser specifiescredentials Ą Interactive

ÅUser does not specifycredentials ĄNon-Interactive

https://learn.microsoft.com/en-us/windows/win32/secauthn/lsa-user-logon-authentication

attl4s.github.io

Interactive

Å¢ȅǇƛŎŀƭƭȅ όōǳǘ ƴƻǘ ƭƛƳƛǘŜŘ ǘƻύ ǿƘŜƴ ȅƻǳ ƭƻƎ ƛƴ ǘƘǊƻǳƎƘ ²ƛƴŘƻǿΩǎ ŀǳǘƘ ǎŎǊŜŜƴ
ÅE.g. physical authentication via Winlogon+ LogonUI

ÅThe important bit here is that user credentials are cachedwithin the memory of
the LSA process (lsass)
ÅCredentials are cached and prepared for each Authentication Package

ÅCached credentials allow Windows providing a Single Sign-On (SSO) experience to
users

https://learn.microsoft.com/en-us/windows/win32/secauthn/interactive-authentication

attl4s.github.io

Interactive (cont.)

https://learn.microsoft.com/en-us/windows/win32/secauthn/interactive-authentication

attl4s.github.io

Non -Interactive

Åά/ŀŎƘŜŘ ŎǊŜŘŜƴǘƛŀƭǎ ŀƭƭƻǿ ²ƛƴŘƻǿǎ ǇǊƻǾƛŘƛƴƎ ŀ {ƛƴƎƭŜ {ƛƎƴ-On (SSO) experience
ǘƻ ǳǎŜǊǎέ
ÅSuch statement makes sense when talking about non-interactive authentications

ÅRather than the user moving a finger, the application in use leverages the cached
credentials on behalf of the user

ÅThat is, non-interactive authentications are only supposed to work after an
interactive authentication
ÅWhen cached credentials are available!

https://learn.microsoft.com/en-us/windows/win32/secauthn/noninteractive-authentication

attl4s.github.io

Non -Interactive (cont.)

ÅHow does this work? Such applications leverage the Security Support Provider
Interface (SSPI) to perform these authentications

https://learn.microsoft.com/en-us/windows/win32/secauthn/noninteractive-authentication

attl4s.github.io

Non -Interactive (cont.)

attl4s.github.io

Logon Sessions

attl4s.github.io

Logon Sessions

ÅLogon sessions are created on the target system after a successful authentication
ÅDoes not matter whether it is physical/remote/domain/local/interactive/non-interactive

ÅThe important bit here:

AP cached credentials are tied to logon sessions!

ÅIn which situations are logon sessions going to have cached credentials?

https://docs.microsoft.com/en-us/windows/desktop/secauthn/lsa-logon-sessions

attl4s.github.iomimikatz

attl4s.github.io

Logon Sessions (cont.)

ÅLogon sessions will typically have cached credentialsafter an interactive
authentication

ÅOn the other hand, non-interactive authenticationscommonly result in logon
sessions without cached credentials

Å!ǎ ȅƻǳ Ƴŀȅ ƘŀǾŜ ƴƻǘƛŎŜŘ όάǘȅǇƛŎŀƭƭȅΣ ŎƻƳƳƻƴƭȅέύΧ
ÅSometimes interactive does not result in cached credentials

ÅSometimes non-interactive may result in cached credentials

https://docs.microsoft.com/en-us/windows/desktop/secauthn/lsa-logon-sessions

attl4s.github.io

Logon Types

ÅFor reference, there are different types of logon sessions (link in the footnotes)

https://learn.microsoft.com/en-us/windows-server/identity/securing-privileged-access/reference-tools-logon-types

attl4s.github.io

Example - Interactive

https://github.com/leechristensen/Random/tree/master/PowerShellScripts

attl4s.github.io

Example - Network

https://github.com/leechristensen/Random/tree/master/PowerShellScripts

attl4s.github.io

[ŜǘΩǎ ƳƻǾŜ ƻƴ ŀƴŘ ǎŜŜ ǿƘŀǘ ŀŎŎŜǎǎ ǘƻƪŜƴǎ ŀǊŜ ŀƴŘ ǘƘŜƛǊ ǇǳǊǇƻǎŜΗ

attl4s.github.io

Access Tokens

attl4s.github.io

LSAAuth Auth package

Logon Session

Security information

Creates

Provides

TOKEN

User SID

Logon Session ID

Integrity

Groups

Χ

Creates

UserA HostA

Physical

Remote

NTLM

Kerberos

attl4s.github.io

Access Tokens

ÅWhen a logon session is created, information is returned to LSA that is used to
create an access token

ÅAn access token is a protected objectthat contains the local security contextof an
authenticated user

ÅEvery access token is tied to a logon session

ÅAccess tokens are associated to processes or threads

https://docs.microsoft.com/en-us/windows/desktop/secauthz/access-tokens

attl4s.github.io

Access Tokens (cont.)

https://docs.microsoft.com/en-us/windows/desktop/secauthz/access-tokens

LSA

Process.exe

Token

Logon Session1

Logon Session2

é

Cached Credentials

SSPI

attl4s.github.io

Whatõs Inside a Token

ÅAccess tokens contain important data about the user and its execution context:

ÅThe user security identifier (SID)

ÅGroups the user is a member of

ÅA list of privileges

ÅLogon session ID

ÅIntegrity level

ÅType of the token

ÅΧ

https://learn.microsoft.com/en-us/windows/win32/secauthz/access-tokens

attl4s.github.iohttps://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-principals

attl4s.github.io

Multiple Security Contexts

ÅWithin Windows, it is possible for the same user to have different execution
contexts
ÅE.g. User Account Control (UAC) splits execution between medium (regular) and high integrity

(admin)

ÅHow? Windows allows the same user to have different access tokens and logon
sessionsin the same system

https://docs.microsoft.com/en-us/windows/desktop/secauthz/access-tokens

attl4s.github.io

attl4s.github.io

Purpose of Access Tokens

ÅWindows uses accesstokens to carryout accesscontrol decisions

ÅWindows securableobjectshavea list of control rules(DACL) associated

ÅProcesses/ threadsaccessingsuchobjectshaveanaccesstoken

ÅThetoken informationiscomparedagainstthe control rulesof anobject to
determine if accessisallowedor denied

https://docs.microsoft.com/en-us/windows/desktop/secauthz/access-tokens

Passwords.txt

DACL

hōƧŜŎǘΩǎ {ŜŎǳǊƛǘȅ
Descriptor

Access Denied

S-1-5-21-domain-1004 (wint3r)

Read, Write, Execute

ACE 1

Access Allowed

S-1-5-32-544 (Administrators)

Write

ACE 2

Χ

!ǘǘƭпǎΩǎ tǊƻŎŜǎǎ

Χ

S-1-5-32-544
(Administrators)

Χ

Groups

²ƛƴǘоǊΩǎ tǊƻŎŜǎǎ

Χ

S-1-5-21-domain-1004

User SID

Access Token

Access Token

attl4s.github.io

Token Types

ÅPrimary Tokens (process tokens)

ÅEvery process has a primary token associated

ÅWhen a new process is created, the default action is to inherit the primary
token of its parent

ÅImpersonation Tokens (thread tokens)

ÅEnable a thread to run with a different security context (different token) than
the parent process

ÅUsually used for client and server scenarios

https://docs.microsoft.com/en-us/windows/desktop/secauthz/access-tokens - https://www.exploit-db.com/papers/13054

attl4s.github.io

Impersonation Tokens

https://es.slideshare.net/heirhabarov/hunting-for-privilege-escalation-in-windows-environment

service.exe

SvcAcc

SvcAcc Goku Vegeta

ÅA new thread is created for every client
connecting to the service

ÅThanks to impersonation tokens, threads
can run with the security context of clients

ÅThis enables the service to control access
via ACLs

Main Thread Thread Thread

attl4s.github.io

How does it work?

ÅServices which support Windows authentication carry out something called client
Impersonation

ÅWhen a client connects to a service of this kind:

1. Credentials are verified

2. An access token with the security context of the client is created

3. The service places a copy of that token into a new thread

4. Such thread can act on behalf of the client and is subject to the restrictions
imposed by ACLs

attl4s.github.io

Vegeta

Web01.capsule.corp

Process

Thread

Impersonates

Auth

Vegeta Access Token

Vegeta

Web.exe

SvcAcc

ShareSupport

Lists

attl4s.github.io

Impersonation Levels

ÅSomeservicesmayjust requirelimited informationfrom their clientsand not a
full impersonation

ÅDependingon the serviceand howƛǘΩǎconfigured, impersonationtokens can
havedifferent impersonationlevels

https://docs.microsoft.com/en-us/windows/desktop/secauthz/impersonation-levels

attl4s.github.io

User Impersonation

attl4s.github.io

User Impersonation

ÅCreatingor hijackingthe security context of another userto act on its behalf in
the network
ÅCreating a security context commonly requires credentials

ÅHijacking a security context commonly requires privileges

ÅWe will focus on leveraging the Windows componentsstudied in previous
sections (APs, logon sessions, access tokens...)
ÅBut we will also show alternative waysto perform user impersonation

attl4s.github.io

User Impersonation (cont.)

ÅThe following sections will talk about impersonation via:
ÅAccess token manipulation

ÅPasswords

ÅNT hashes

ÅKerberos tickets

ÅBear in mind that there exist other types of credential materialand protocols, but
they will not be explained here

LSAAuth Auth package

Logon
Session

Security
information

Creates

Provides

TOKEN

User SID

Logon Session ID

Integrity

Groups

Χ

Creates

UserA HostA

Do I have passwords?

Do I have hashes / tickets?

Can I manipulate interesting tokens?

attl4s.github.io

Can I Manipulate

Interesting Tokens?

attl4s.github.io

Recap

ÅStarting with this ςuseful for the next sections!

ÅRecall that credentials (if any) are tied to logon sessions
ÅUsually the result of an interactive authentication

ÅIf you want to use a token to access network resources, it must be associated to a
session with credentials
ÅAccess tokens represent the local security contextof an authenticated user

Å{Ŝǎǎƛƻƴ ŎŀŎƘŜŘ ŎǊŜŘŜƴǘƛŀƭǎ Ŏŀƴ ōŜ ǎŜŜƴ ŀǎ ǘƘŜ άnetwork security contextέ

attl4s.github.io

Recap (cont.)

https://docs.microsoft.com/en-us/windows/desktop/secauthz/access-tokens

LSA

Process.exe

Token

Logon Session1

Logon Session2

é

Cached Credentials

SSPI

attl4s.github.io

Access Token Manipulation

ÅThe Windows APIprovides functionality to manipulate access tokens
Å9ΦƎΦ ŘǳǇƭƛŎŀǘŜ ǘƻƪŜƴǎΣ ŎǊŜŀǘŜ ŀ ƴŜǿ ǇǊƻŎŜǎǎ ǿƛǘƘ ŀƴ ǎǇŜŎƛŦƛŎ ǘƻƪŜƴΧ ŀƴŘ ǎƻ ƻƴ

ÅDepending what you are trying to achieve, you may need privileges

ÅAs a local admin or SYSTEM, you will be able to manipulate any token in the system

ÅAs a service account, you will likely be able to escalate privileges using techniques like Hot

Potato and the like

ÅAs a normal user, you will be able to manipulate your own stuff (more on this later)

attl4s.github.io

Common Approaches

ÅThere are two common approaches for when you want to hijack the security
context of an existing token:

1. Token Impersonation
ÅDuplicate the target token and apply it to your existing process or a new one

2. Process Injection
ÅInject your payload/capability into the process where the target token is living

attl4s.github.io

Token Impersonation

TOKEN

User SID

Logon Session ID

Integrity

Groups

Χ

TOKEN

User SID

Logon Session ID

Integrity

Groups

Χ

New Process
or

Existing Thread

Logon Session

Process

1. DuplicateToken

2. ApplytoΧ

attl4s.github.io

Process Injection

TOKEN

User SID

Logon Session ID

Integrity

Groups

Χ

Logon Session
Process

Payload

1. Inject

attl4s.github.io

Do I Have Passwords?

attl4s.github.io

RunAs.exe

ÅIf you are a Windows user, you are probably familiar with RunAs.exe

ÅThis tool enables the creation of processes using alternate credentials
ÅάL ŀƳ Vegetaand I want to create a process running as Bulmaέ

ÅA default execution of RunAswill verify the provided credentials via LSA
ÅSimilar to an interactive authentication (i.e. credentials cached for all the supported APs)

ÅThe computer must know how to handle authentication for the target user

attl4s.github.io

attl4s.github.io

Unknown Identities

ÅWhat happens when you use credentials from an account that is not knownby
the current system?
ÅE.g. local user from other system or domain user from an untrusted domain

https://blog.cobaltstrike.com/2015/12/16/windows-access-tokens-and-alternate-credentials/

FAIL

attl4s.github.io

The Netonly Flag

ÅRunAsoffers the Netonlyflagto allow the scenario described in the previous slide

ÅThis flag tells RunAsthat the specified credentials are for remote access only

ÅCredentials are not verified by LSA (i.e. you can specify wrong ones)

ÅNetonlyprocesses have therefore two different security contexts:
ÅLocal level:the process runs with the original identity that executed RunAs

ÅNetwork level:the process runs with the new identity (via cached credentials)

https://blog.cobaltstrike.com/2015/12/16/windows-access-tokens-and-alternate-credentials/

attl4s.github.io

New Logon
Session

TOKEN

User SID

Logon Session ID

Integrity

Groups

Χ

TOKEN

User SID

New Logon
Session ID

Integrity

Groups

Χ

1. A new logonsessioniscreatedwith the
specifiedcredentials

2. Thecurrent token is
duplicated, and its logonsession

IDupdatedwith the new one

New Process

3. Thenew processrunswith suchtoken

Original Logon
Session

attl4s.github.io

attl4s.github.iomimikatz

attl4s.github.io

Under The Hood

ÅRunAsuses the Win32 API CreateProcessWithLogonfunction
ÅCreates a new process with the security context of the specified credentials

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw

