
UNDERSTANDING A PAYLOAD’S LIFE
Featuring Meterpreter & other guests

ATTL4S

attl4s.github.io

ATTL4S

• Daniel López Jiménez

• Twitter: @DaniLJ94

• GitHub: @ATTL4S

• Youtube: ATTL4S

• Loves Windows and Active Directory security

• Managing Security Consultant at NCC Group

• Associate Teacher at Universidad Castilla-La Mancha (MCSI)

attl4s.github.io

The aim of this presentation is understanding the life of a Meterpreter payload - from its

generation to its execution. How all the pieces fit together. This knowledge will be handy

not only for MSF and Meterpreter… but for almost any popular C2 framework

attl4s.github.io

The idea and name of this presentation are based on Raphael Mudge’s “Red Team Ops with

Cobalt Strike (4 of 9): Weaponization” video, where he wonderfully explained the life of a

Beacon payload

attl4s.github.io

Metasploit Cobalt Strike Modern Frameworks

attl4s.github.io

Agenda

1. Needing an Advanced Payload

2. About Terminology

3. Payload Generation

4. Payload Executables

5. Payload Staging

6. Reflective Loading

attl4s.github.io

Needing an Advanced Payload

attl4s.github.io

Introduction

• Consider a memory corruption vulnerability

• Prior to the existence of “advanced” payloads, it was common to rely on native
command interpreters for post-exploitation
• E.g. run cmd.exe and redirect input to and output from into a TCP connection

• Payloads like Meterpreter were created as better choices for such scenarios

http://www.hick.org/code/skape/papers/meterpreter.pdf

attl4s.github.io

Meterpreter Origins

• Born in response to the limitations of native command
interpreters

• Which limitations?

• Presence of command interpreter process

• Execution may not be allowed on restricted
environments

• Limited set of commands

http://www.hick.org/code/skape/papers/meterpreter.pdf

attl4s.github.io

Meterpreter Origins (cont.)

As such, the original goals of Meterpreter were:

• Must not create a new process

• Must work in restricted environments

• Must allow for robust extensibility

http://www.hick.org/code/skape/papers/meterpreter.pdf

attl4s.github.io

The Meta-interpreter

• Command interpreter & remote access tool
• Have remote control of a system - extract juicy info!

• Designed to be a “payload”
• Can be executed from memory without touching disk

• Suitable for memory corruption exploits and other attack scenarios

• Capabilities can be extended
• Meterpreter extensions!

attl4s.github.io

The Meta-interpreter (cont.)

• Integrated within the Metasploit Framework
• Meterpreter is the server

• Metasploit is the client

• Multi-platform (implementations in C, PHP, Python, Java…) and multi-architecture
(x86, x64, ARM…)

• We are going to focus on Windows Meterpreter

• Written in C/C++/Assembly (+ Ruby on MSF’s side)

https://github.com/rapid7/metasploit-payloads

attl4s.github.io

The Meta-interpreter (cont.)

attl4s.github.io

Components

• Windows Meterpreter main components are reflective DLLs
• Can be loaded from memory, rather than disk (more on this later)

• Meterpreter’s core component is called Metsrv
• In charge of network communications, extension-loading functionality and more

• Metsrv alone does not provide much in terms of offensive capability
• For that we need extensions!

attl4s.github.io

Extensions

• Further reflective DLLs loaded as modules to expand capabilities of a Meterpreter
session (no new processes, and nothing written to disk)

• Some examples:
• Stdapi: interact with the OS and file system (cd, ls, netstat, arp and more)

• Extapi: WMI and ADSI support, interact with the clipboard, with services and more

• Priv: escalate to SYSTEM or dump SAM

• Kiwi: Mimikatz

• Bofloader: load COFF/BOF files

• …

attl4s.github.io

Loading Extensions (cont.)

• Extensions follow the “ext_server_*.dll” nomenclature
• (Elevator is a reflective DLL used by the Priv extension)

• (Screenshot is a reflective DLL used by the Stdapi extension)

attl4s.github.io

High-level Architecture

Attacker System

MSF

Attacker Network Victim Network

Victim System

Process

Meterpreter Code

Metsrv

Extension1

Extension2

…

attl4s.github.io

“But m8… Meterpreter is SO NOISY!!”

attl4s.github.io

Modern Needs

• Executables generated by Metasploit are blocked by AVs

• The way Meterpreter’s shellcode initialises in memory is detected and blocked by
EDRs

• Even if executed, memory scans and Yara rules can easily spot a Meterpreter
agent within the memory of a process

attl4s.github.io

Modern Needs (cont.)

• When Meterpreter was created, it filled an important need of that time
• A post-exploitation tool better than traditional command interpreters

• Over time, other needs have arisen and focus has shifted to them

https://github.com/rapid7/metasploit-framework/discussions/14490

attl4s.github.io

Modern Needs (cont.)

• Nowadays, it is virtually impossible to use public tools right out-of-the-box
• Including Meterpreter

• Security mechanisms have improved, which forces the offensive side to adapt and
look for ways to keep doing its job

• If your toolset is easily blocked by automated solutions…
• You cannot demonstrate impact

• You cannot assess efficacy

• You cannot train and improve security teams

attl4s.github.io

Modern Needs (cont.)

• While we can always ask clients to exclude/allow our toolset in certain types of
assessments, in many cases this simply slows things down

• Instead of giving up on great tools like Meterpreter, let’s adapt and see what we
can do…
• …and more importantly, what we can learn!

• Even if we end up not using Meterpreter, we will be able to extrapolate a lot of
knowledge towards other tools

attl4s.github.io

Over the next sections we are going to analyse the life of a Meterpreter payload,
from its generation to its execution

attl4s.github.io

1. Payload Generation

3. Payload Staging

2. Payload Executables

4. Reflective Loading

Shellcode
Exploit/

Executable
Staging
Process

Metsrv
Reflective
Loading

Metsrv

Extension2
Reflective
Loading

Extension1
Reflective
Loading

…

Extension2Extension1 …

Optional

Optional

attl4s.github.io

But first… let’s understand a few key concepts and general payload terminology

attl4s.github.io

About Terminology

attl4s.github.io

Exploit & Payload

• The terms “exploit” and “payload” are often used interchangeably, which leads to
confusion

• Focused on vulnerability exploitation, they are meant to decouple:

1. Exploit - the process of abusing a vulnerability

2. Payload - code that gets executed after exploitation, to achieve specific results

attl4s.github.ioDrawn by my dad!

attl4s.github.io

Exploit & Payload (cont.)

• If facing a memory corruption vulnerability, code that gets executed is usually
called shellcode
• Sequence of bytes that represent assembly instructions

• If facing other types of vulnerabilities, payloads may have different looks
• In a SQL injection, a payload could be SQL code that shows the tables of a database

• In a XSS attack, a payload could be JavaScript code structured in a specific way

• In a broken access control flaw, a payload could be a specially crafted HTTP request

attl4s.github.io

In-memory Payloads

• We will stick to scenarios where you can execute code (shellcode) in memory
• Vulnerabilities like MS17-010, situations where you can run malicious executables, or post-

exploitation activities like process injection

• Meterpreter and a lot of MSF modules can be executed from memory due to the
use of reflective DLLs (reflective DLL injection)
• Reflective DLLs are “easy” to develop, as opposed to writing shellcode/assembly

• Similar execution processes can be used for a reflective DLL toolset

https://github.com/stephenfewer/ReflectiveDLLInjection

attl4s.github.io

Reflective DLL Injection?

• Technique intended for in-memory execution of unmanaged or native DLL files
• Can also be extended to cover EXE files (Reflective PE injection)

• This technique is not MSF/Meterpreter-specific!
• Agents from modern frameworks are often designed as reflective DLLs (and do good use of

reflective PE injection)

• Their implementation is often focused on evading security solutions

https://github.com/stephenfewer/ReflectiveDLLInjection

attl4s.github.iohttps://github.com/rapid7/ReflectiveDLLInjection

attl4s.github.iohttps://www.cobaltstrike.com/blog/cobalt-strike-4-4-the-one-with-the-reconnect-button/

attl4s.github.iohttps://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/

attl4s.github.iohttps://www.mdsec.co.uk/2021/12/nighthawk-0-1-new-beginnings/

attl4s.github.iohttps://github.com/HavocFramework/Havoc/blob/main/WIKI.MD#agents

attl4s.github.io

Interesting Fact

• Metasploit started using Fewer’s
technique from 2008 onwards

• Before that, another DLL injection
method was used that today can be
found as "patchupmeterpreter“

http://www.hick.org/code/skape/papers/remote-library-injection.pdf

attl4s.github.io

Interesting Fact (cont.)

https://www.exploit-db.com/docs/english/13007-reflective-dll-injection.pdf

attl4s.github.io

Payload Generation

Now let’s move on and analyse how Meterpreter payloads are generated by MSF!

attl4s.github.io

Payload Generation

attl4s.github.io

Introduction

• Popular payloads come in the form of shellcode
• E.g. full position independent code (PIC) or combination of PIC + loader

• Why? Due to its portability

• Shellcode can be used in exploits, post-exploitation tasks, and also from within a
myriad of executable formats

attl4s.github.io

Introduction (cont.)

• Frameworks like Metasploit automate the process of generating shellcodes

• All you need to do is populate a number of settings and press the button
• “I want a Meterpreter payload which connects back to a specific IP and Port using HTTP”

• We are going to analyse:
1. How to build static Meterpreter DLLs

2. How these DLLs are manipulated to generate our payloads

attl4s.github.io

Building Meterpreter

attl4s.github.io

Metflective DLLpreter

• Remember Meterpreter consists of multiple
reflective DLLs which can be loaded from memory
• Metsrv + Extensions

• Metasploit comes with those DLLs pre-compiled
and ready for use

attl4s.github.io

Building Meterpreter

• If you want to (modify and) compile those DLLs yourself:
• Visual Studio projects or Docker (Windows/Linux)

• The Metasploit-Payloads repo has nice documentation

• Example of building Metsrv

https://github.com/rapid7/metasploit-payloads/tree/master/c/meterpreter

attl4s.github.io

Building Meterpreter (cont.)

• Note that what makes these DLLs “reflective” is the result of building them along
with the ReflectiveLoader component

• Example (Metsrv):

https://github.com/rapid7/metasploit-payloads/blob/master/c/meterpreter/source/metsrv/metsrv.c

attl4s.github.io

Reflective Loader

rDLLDLL
Compile

Reflective
Loader

attl4s.github.io

Reflective DLL Manipulation

attl4s.github.io

Using Reflective DLLs

• If you use the Meterpreter DLLs directly like regular shellcode, you won’t achieve
any results

• In order to initialise a DLL of this kind from memory, its “ReflectiveLoader” export
must be called
• Reflective DLLs are regular DLLs built together with a portable reflective loader!

https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c

attl4s.github.io

Dissecting Metsrv

https://github.com/hasherezade/pe-bear

See? It is a DLL

attl4s.github.io

Dissecting Metsrv (cont.)

https://github.com/rapid7/metasploit-framework/issues/16493

Meterpreter uses ordinal values instead of the traditional “ReflectiveLoader” name
since Metasploit 6.0

attl4s.github.io

Turning Into Shellcode

• So what the hell does MSF do to turn a rDLL into “shellcode”?

• MSF patches a small piece of code into the DOS header of the target DLL
• Usually referred to as “bootstrap code” or “initialisation stub”

• In the case of Meterpreter, MSF does this to Metsrv

• The main goal of that code is calling the reflective loader exported function
1. When position 0 of the shellcode is called, the bootstrap will be executed

2. The bootstrap will then call the export, initialising the reflective loading process

https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/meterpreter-configuration.html

attl4s.github.io

Reflective Loader

rDLL

Process Memory

1
Bootstrap

2

attl4s.github.io

Bootstrap - “invoke_metsrv”

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/meterpreter_loader_x64.rb

attl4s.github.io

Bootstrap - DOS Header Patching

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/meterpreter_loader_x64.rb

attl4s.github.io

Metsrv not Patched

https://github.com/hasherezade/pe-bear

attl4s.github.io

Metsrv Patched

https://github.com/hasherezade/pe-bear

attl4s.github.io

So…

• When a Meterpreter payload is generated, MSF patches bootstrap code into
Metsrv’s pre-compiled rDLL
• With this code, the whole piece can now be executed as “regular” shellcode

• But once again, with just this you would not receive any Meterpreter session

• There is an important piece still missing: CONFIGURATION SETTINGS!
• What about our LHOST, LPORT, extension settings, etc?

attl4s.github.io

Configuration Block

• Meterpreter uses a specific structure called Configuration Block which contains
the entire payload configuration

• When generating a payload, this block is created dynamically by MSF with all the
settings selected by the user

• MSF not only patches the bootstrap, it also appends the configuration block at
the end of Metsrv

attl4s.github.io

Reflective Loader

rDLL

Bootstrap

Configuration Block

attl4s.github.io

Configuration Block (cont.)

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/meterpreter_loader_x64.rb

attl4s.github.io

Config Block Appended

https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/meterpreter-configuration.html

attl4s.github.io

What Does it Contain?

• Configuration Block Structure:
• One Session configuration block

• One or more Transport Configuration blocks, followed by a terminator

• One or more Extension configuration blocks, followed by a terminator

• Perfectly explained at MSF docs:
• https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/meterpreter-

configuration.html

https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/meterpreter-configuration.html

attl4s.github.io

The Bootstrap Again!

• If paid special attention, you probably noticed that the bootstrap did more things
than just calling a DLL export
• Executing the export loads Metsrv in memory (DLL_PROCESS_ATTACH) - nothing else

• The bootstrap makes a second call to DllMain (DLL_METASPLOIT_ATTACH) and
passes a pointer to the configuration block

• With this, Metsrv has everything to start its job!

attl4s.github.io

Bootstrap - “invoke_metsrv”

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/meterpreter_loader_x64.rb

Metsrv’s DllMain... huh?

attl4s.github.io

Custom “DllMain” - RDI

https://github.com/rapid7/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c

If a reflective DLL defines this, it will use a custom
DllMain rather that RDI’s default one…

attl4s.github.io

Custom “DllMain” - Metsrv

https://github.com/rapid7/metasploit-payloads/blob/master/c/meterpreter/source/metsrv/metsrv.c

• Metsrv specifies a custom DllMain, which is called by the
bootstrap with DLL_METASPLOIT_ATTACH

• As a result, Metsrv’s Init function is executed with a pointer
to the config block

attl4s.github.io

Session Opened!

NOW… If this shellcode is executed…

attl4s.github.io

Bonus: MSF Modules

• For exploits/modules that rely on using Windows API calls, MSF typically implements their logic in
one of the following two ways:

• C code + Railgun

• Reflective DLL

• Both techniques are capable of running the module logic within the current process

• Reflective DLLs have the added benefit of being able to be injected into other processes (if
needed)
• If something goes wrong, the original session keeps living!

attl4s.github.io

Bonus: JuicyPotato Module

• Pre-compiled rDLL injected into target
process
• Saves offset pointing to loader export

• We don’t need a bootstrap here!

• Module settings and selected payload
also injected to target process

• Execution via new thread
• Points to loader export

• Module config passed as parameter

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/local/ms16_075_reflection_juicy.rb

attl4s.github.io

Other Generation Approaches

attl4s.github.io

Dynamic Building

• Some open-source frameworks include compilers in their automation processes
• E.g. Sliver, Havoc, Mythic, Covenant…

• Instead of manipulating pre-compiled files, these frameworks generate and
compile code dynamically

• This provides multiple benefits

attl4s.github.io

Let’s analyse the Havoc Framework as an example…

attl4s.github.io

Havoc Artifacts

https://github.com/HavocFramework/Havoc/blob/master/Teamserver/pkg/common/builder/builder.go

• Demon EXEs and DLLs are directly
generated from source code

• This is not a template where rDLL code is
patched and executed (more on this on the
“Payload Executables” section)

• As such, Demon EXEs and DLLs do not use or
rely on reflective DLL injection by default

attl4s.github.io

Havoc Shellcode

Demon shellcode follows a similar approach to MSF’s - but with a builder

1. Config settings are set dynamically before compilation
• Avoids the use of a configuration block and code to find it

2. Demon’s DLL code is built along with the KaynLdr component (Havoc’s
reflective loader)

3. A little bootstrap code is prepended to the resulting rDLL, in charge of
calling the loader’s export

https://github.com/HavocFramework/Havoc/blob/master/Teamserver/pkg/common/builder/builder.go

attl4s.github.iohttps://github.com/HavocFramework/Havoc/blob/master/Teamserver/pkg/common/builder/builder.go

Compiles DLL with the selected configuration

Prepends bootstrap to the resulting DLL

attl4s.github.io

A Note About Commercial Tools

• Commercial C2s tend not to provide source code to avoid leaking capabilities to
competitors, or making analysis of their agents/tools harder

• Unlikely that features like dynamic code generation and compilation will be
included in such frameworks

attl4s.github.io

Payload Decorations

attl4s.github.io

Payload Decorations

• Actions or modifications we perform on a payload after it has been generated

• The purpose is usually obfuscation, bad char removal or adding further
capabilities to protect the payload
• Payload encoding/encryption, execution guardrails, stomp/replace unnecessary data…

• Note that after these “decorations”, the whole payload usually remains one single
piece, suitable for exploits or post-exploitation activities

attl4s.github.io

Example - MSF Encoders

• The main purpose of encoding is avoiding chars that might not be allowed in our
attack scenario (MSF supports multiple encoders!)

• Encoding has also traditionally been used as a layer of obfuscation
• Note that signatures will reappear during execution, after the payload is decoded!

• Popular implementations require RWX permissions
• Decoding process (RW) + execution of decoded payload (RX)

https://github.com/rapid7/metasploit-framework/tree/master/modules/encoders

attl4s.github.io

Example - MSF Encoders (cont.)

• When using a encoder in e.g. MSFVenom, the run_encoder() function is called
• This in turn calls the encode() method of the selected encoder

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload_generator.rb

attl4s.github.iohttps://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/encoder.rb

Encodes the payload’s buffer and returns a new
shellcode with the self-decoding routine

Let’s see what do_encode() does…

attl4s.github.iohttps://github.com/rapid7/metasploit-framework/blob/master/modules/encoders/x64/xor.rb

The payload needs code to auto-decode itself –
this is the “decoder stub”

E.g. this is the decoder stub associated to MSF’s x64/XOR decoder

attl4s.github.iohttps://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/encoder.rb

• The buffer is encoded in blocks, and the decoder
stub is prepended to resulting buffer

• Result = decoder stub + encoded payload

• A final bad char check is done, in case any had
been specified

attl4s.github.io

Decoder
Stub

Payload

encode()

Encoded Payload

attl4s.github.io

Example - SGN

• Reimplementation of Shikata Ga Nai in golang with x64 support
• This one is not integrated within the Metasploit Framework

• Serves a similar purpose to what we have already explained

• Nonetheless, good example of a modern encoder with some interesting features

https://github.com/EgeBalci/sgn

attl4s.github.io

Example - SGN (cont.)

https://github.com/EgeBalci/sgn

attl4s.github.io

Example – Nighthawk’s Keying

• Nighthawk offers a variety of ways to
ensure that a payload is only executed
under specific circumstances

• Implemented as additional shellcode
integrated with the agent’s

https://www.mdsec.co.uk/2022/05/nighthawk-0-2-catch-us-if-you-can/

attl4s.github.io

Example - CS’ Malleable PE

• Cobalt Strike also has capabilities to post-manipulate Beacon’s shellcode
• E.g. add/prepend/append/replace data associated to the Beacon DLL

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_main.htm

attl4s.github.io

Example - CS’ Malleable PE (cont.)

• It also supports obfuscation methods and ways to configure specific data
leveraged by the reflective loader

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_main.htm

attl4s.github.io

Now let’s move on into another section, and understand the art of inserting
payloads within executable recipients!

attl4s.github.io

Payload Executables

attl4s.github.io

Introduction

• As we have seen, popular payloads come in the form of shellcode

• Shellcode can be executed from within a myriad of executable formats
• AKA “shellcode loaders”

• Frameworks like Metasploit automate the process of generating those
executables

attl4s.github.io

Automation

• MSF’s automation comprises two main steps:
1. Generating payload with specific characteristics

2. Including payload within an executable template

• Executable formats include
• Scripts (e.g. PowerShell or VBA)

• Compiled binaries (e.g. EXE or DLL)

HERE

1. Shellcode Generation

2. Insert into template

attl4s.github.io

Templates

• Default MSF templates are stored within /data/templates

• As an example, the following image shows precompiled EXE templates
• The source of these templates is also available in /data/templates/src

https://github.com/rapid7/metasploit-framework/tree/master/data/templates

attl4s.github.io

EXE Class

• Metasploit’s Msf::Util::EXE class implements all the logic
• Abstraction through “to_executable_fmt” function

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/util/exe.rb

attl4s.github.io

Scripts

attl4s.github.io

Scripts

• For scripts, a simple string
substitution approach is followed

• Templates with placeholders

• Placeholders are replaced by the
payload’s code

https://github.com/rapid7/rex/blob/master/lib/rex/powershell/payload.rb

attl4s.github.io

Scripts (cont.)

https://github.com/rapid7/rex-powershell/blob/master/data/templates/to_mem_pshreflection.ps1.template

attl4s.github.io

Compiled Artifacts

attl4s.github.io

Compiled Artifacts

• For compiled artifacts, MSF manipulates pre-compiled templates
• We are going to focus on PEs

• Two main approaches:

1. String substitution (AKA “sub_method”)

2. PE struct manipulation

attl4s.github.io

String Substitution

• Pre-compiled templates with buffers where the payload is patched
• Buffers have fixed sizes set before compilation

• MSF uses placeholders to locate the beginning of said buffers
• “PAYLOAD:”

• Payload size must be lower or equal than the one specified in the buffer
• Otherwise patching the payload breaks the executable!

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/util/exe.rb

attl4s.github.iohttps://github.com/rapid7/metasploit-framework/blob/master/data/templates/src/pe/exe/template.c

Placeholder “PAYLOAD:” with fixed size of 4096

attl4s.github.iohttps://github.com/rapid7/metasploit-framework/blob/master/lib/msf/util/exe.rb#L549

1. Finds placeholder
2. If payload’s length is ok, packs data and writes it

attl4s.github.io

String Substitution (cont.)

• Nowadays, the only MSF (PE) formats that use “sub_method” by default are:
• exe-service (x86, x64)

• dll (x86, x64)

• exe-small (x86)

• Due to the requirement of fixed sizes, not all payloads are supported when
selecting those formats
• Big payloads will fail (MSF team is working on this!)

• Related -> https://github.com/rapid7/metasploit-framework/pull/17594

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/util/exe.rb

attl4s.github.io

The placeholder is not present because if was filled with the shellcode!

attl4s.github.iohttps://github.com/rapid7/metasploit-framework/tree/master/data/templates

• Generation fails when selecting a big payload (e.g. stageless Meterpreter)

• UPDATE (08/03/2023): DLLs now can use new templates with bigger buffer sizes

• Small payload? → template_x64_windows.dll

• Big payload? → template_x64_windows.256kib.dll

attl4s.github.io

PE Struct Manipulation

• Parse PE template and modify its structure and fields
• MSF uses Metasm or Rex (PeParsey)

• Different ways to patch your payload (MSF supports multiple)
• Add it into a new section and modify the entrypoint

• Overwrite the original entrypoint location with the payload

• Does not require placeholders / fixed sizes on templates
• As such, arbitrary templates and payloads can be used - which is handy!

attl4s.github.iohttps://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/exe/segment_appender.rb

The placeholder is present because the payload is not stored there!

New RWX section with new Entrypoint

attl4s.github.iohttps://blog.scrt.ch/2014/06/13/metasploit-psexec-resurrect/

x64 EXE using the exe-only approach (overwrite EP location) and Procmon as the template

.text section switched to RWX

attl4s.github.io

A Bit of a Mess

• Generation of executables in MSF is not very consistent
• Depending the options you select, MSF might support (or not) certain approaches

• In the past, the predominant method used to be “sub_method”
• It made sense given the prevalence of stagers and their (more or less) standard sizes

• MSF nowadays prefers PE struct manipulation approaches by default
• Support arbitrary templates and don’t require fixed sizes or placeholders

https://www.blackhillsinfosec.com/advanced-msfvenom-payload-generation/

attl4s.github.io

A Bit of a Mess (cont.)

exe exe-small exe-only exe-service dll

x86
“sub_method”, PE

manipulation
(inject, append)

sub_method
PE manipulation
(overwrite EP)

sub_method, PE
manipulation
(overwrite EP)

sub_method, PE
manipulation (inject)

x64
PE manipulation
(inject, append)

PE manipulation
(inject, append)

PE manipulation
(overwrite EP)

sub_method sub_method

attl4s.github.io

A Note About Formats

• MSF also supports transforming/encoding a selected payload in different
languages and formats via the REX library

• This is useful when you are developing your own executables, instead of using
MSF’s automation

https://github.com/rapid7/rex/blob/master/lib/rex/text.rb

attl4s.github.io

What About Other Frameworks?

attl4s.github.io

The Artifact Kit

• Capability provided by Cobalt Strike to aid in the generation of executables with
custom templates
• “Cobalt Strike uses the Artifact Kit to generate its executables and DLLs”

• Although it may not look like it at first glance, the Artifact Kit works pretty much
in the same way as some things we have seen in MSF

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_artifact-kit-main.htm

attl4s.github.io

The Artifact Kit (cont.)

• The Artifact Kit uses Sleep and Aggressor Script to automate the generation and
decoration of executables
• And also to register the specified templates on Cobalt Strike’s client menus

• Aggressor Script has a lot of functionality to parse PE files, modify/update
attributes, generate Beacon shellcode programmatically, mask data…

https://download.cobaltstrike.com/aggressor-script/functions.html

attl4s.github.io

The Artifact Kit (cont.)

• The default approach of the Artifact Kit is similar to MSF’s “sub_method”

1. Write your templates with a payload buffer and a placeholder to find it

2. Build your templates

3. Automate the process of finding the placeholder and patching the payload on the buffer

• Of course, this is the DEFAULT approach… the limit is your own imagination
• Sleep is based on Java and is able to create, access, and query Java objects

• You can also call other programs from Sleep if you want (e.g. python scripts)

https://hstechdocs.helpsystems.com/

attl4s.github.io

Dynamic Building

• On the other hand, some frameworks can generate code and compile it
dynamically
• Most likely open source frameworks like Havoc, Sliver, Mythic, Covenant…

• A lot of limitations seen when using static templates don’t apply here
• No need for pre-compiled binaries with buffers and placeholders

• No fixed sizes, we can hold shellcodes with different sizes

• We have fresh executables every time we generate them

attl4s.github.io

Dynamic Building (cont.)

• However, it must be noted that not all these frameworks expose functionality to
ease the process of modifying how executables are generated (à la Artifact Kit)

• Most frameworks usually just provide a way to export their agents in shellcode
format, so that they can be inserted into external loaders

attl4s.github.io

Independent Generators

• There are also independent tools, outside of frameworks, which perform this kind
of automation
• Some use similar techniques to those we have seen, and others use other ways!

• Some examples:
• Shellter - https://www.shellterproject.com/

• OST Payload Generator - https://outflank.nl/services/outflank-security-tooling/

• Inceptor - https://github.com/klezVirus/inceptor

• ScareCrow - https://github.com/optiv/ScareCrow

• PEzor - https://github.com/phra/PEzor

• Freeze - https://github.com/optiv/Freeze

attl4s.github.io

So...

• We understand how Meterpreter shellcodes are typically generated

• We understand how Meterpreter shellcodes are included within executable
recipients like EXEs or DLLs

• Now, before executing anything yet… let’s talk about PAYLOAD STAGING

attl4s.github.io

Payloads Staging

attl4s.github.io

Execution Restrictions

• In certain scenarios, the (big) size of our payload might be an issue

• That’s why there exist two popular ways of execution:
• Staged execution – executing our payload in different phases

• Stageless execution – executing our payload directly

• This is not something specific to MSF, Meterpreter, Reflective DLLs or even
memory corruption vulnerabilities

attl4s.github.io

Staged Execution

Execution in different phases through the use of:

1. Staging Server: in charge of serving stage payloads

2. Stager: typically a small program that connects to a staging server, and
downloads and executes a stage payload

3. Stage Payload(s): the final payload(s) we want to execute

attl4s.github.io

Staged Execution (cont.)

1. Artifact/exploit is run, so the stager code is executed

2. Stager downloads stage from staging server, and pass execution to it

3. The payload’s action is performed (e.g. running Meterpreter)

Exploit/Exe
cutable

Staging
Process

Stage
Payload

Payload
Result

attl4s.github.io

Stageless Execution

Execution is done by running the intended payload directly

1. Artifact/exploit is run, so the payload code gets executed

2. Payload’s action is performed (e.g. running Meterpreter)

Exploit/Exe
cutable

Payload
Payload
Result

attl4s.github.io

So…

• A staged execution is done in different phases by employing stagers and
downloading stage payloads

• A stageless execution is done in a single phase, as everything needed is in place
an ready to be executed

attl4s.github.io

Staging… or Not?

attl4s.github.io

When Staged?

• Entirely dependent on your needs!

• Scenarios with size limitations (e.g. memory corruption exploits)

• Staging provides a lot of flexibility, as different payloads can be used with the
same stager

• Stage payloads are sent over the network (watchout unencrypted comms!)

https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/

attl4s.github.io

When Staged? (cont.)

• As a result of aiming for small sizes, popular stager implementations don’t have
authentication nor payload verification

• Stages can be downloaded by anyone from the staging server

• The staging process can be hijacked to serve arbitrary stages that won’t be verified

• Popular staging processes and stagers also have known behaviours that may
trigger network/endpoint detection and response solutions

https://www.cobaltstrike.com/blog/talk-to-your-children-about-payload-staging/

attl4s.github.io

When Staged? (cont.)

• To avoid some limitations, you can develop a custom staging process or leverage/modify existing
ones

• The Sliver framework is an example of this, extending MSF’s staging process with features like
stage encryption and compression
• Other nice feature could be environmental keying!

• Popular stagers are written as shellcode so they can be easily used within exploits
• For other scenarios you might find easier to develop stagers in higher level languages (and their size

may not matter that much!)

https://github.com/BishopFox/sliver/wiki/Stagers

attl4s.github.io

Useful Links

• https://www.cobaltstrike.com/blog/staged-payloads-what-pen-testers-should-know/

• https://www.cobaltstrike.com/blog/talk-to-your-children-about-payload-staging/

• https://www.cobaltstrike.com/blog/a-loader-for-metasploits-meterpreter/

• https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/

• https://github.com/BishopFox/sliver/wiki/Stagers

• https://github.com/rsmudge/metasploit-loader

• https://github.com/tothi/stager_libpeconv

• https://github.com/DiabloHorn/undetected-meterpreter-stagers

attl4s.github.io

When Stageless?

• Entirely dependent on your needs!

• If you don’t have size restrictions, stageless is pretty cool

• Everything self-contained and ready to be executed
• No stagers and their potential limitations (but also less flexibility)

• If working from disk, there is more surface to be scanned for static signatures

https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/

attl4s.github.io

Back to Meterpreter!

attl4s.github.io

Back to Meterpreter

• Let's see how everything fits with MSF and Meterpreter

• First, we should know how to choose between staged and stageless payloads
within Metasploit:

https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/

attl4s.github.io

Staged Execution - Example

• Example with windows/x64/meterpreter/reverse_https

attl4s.github.io

Back to Meterpreter (cont.)

• We can now wisely choose the appropriate payload depending the scenario we
face:

oMemory corruption vulnerability with little space?
o Probably use staged

oPrivilege escalation via DLL hijack?
o Stageless might fit well

https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/

attl4s.github.io

Remember!

• Meterpreter is not a single piece!

• In order to benefit from its full potential we have to execute:
• Meterpreter’s core component: Metsrv

• One or more extensions? (e.g. Sdtapi & Priv)

• This translates into the execution of multiple reflective DLLs
• In the example above, a total of three: Metsrv, Stdapi & Priv

(In fact, when you use a default Meterpreter payload, it loads those three components)

attl4s.github.io

1. Payload Generation

3. Payload Staging

2. Payload Executables

4. Reflective Loading

Shellcode
Exploit/

Executable
Staging
Process

Metsrv
Reflective
Loading

Metsrv

Extension2
Reflective
Loading

Extension1
Reflective
Loading

…

Extension2Extension1 …

Optional

Optional

attl4s.github.io

What’s Being Staged?

• If we choose a staged Meterpreter, all components will be staged
• windows/x64/meterpreter/reverse_tcp

• If we use a default stageless Meterpreter, only extensions will be staged
• windows/x64/meterpreter_reverse_tcp

• If we choose a stageless Meterpreter and include some extensions, those will not
be staged (but any other will be)
• windows/x64/meterpreter_reverse_tcp EXTENSIONS=stdapi,priv

attl4s.github.io

attl4s.github.io

What’s Being Staged? (cont.)

• Note that extension “staging” will be done by Metsrv

https://github.com/rapid7/metasploit-payloads/blob/master/c/meterpreter/source/metsrv/remote_dispatch.c

Metsrv

Extension2
Reflective
Loading

Extension1
Reflective
Loading

…

Extension2Extension1 …

Optional

attl4s.github.io

MSF Stagers

• If you are curious about Windows MSF stagers, you can find them here:
• https://github.com/rapid7/Metasploit-framework/tree/master/lib/msf/core/payload/windows

• Examples:
• reverse_http.rb

• reverse_tcp.rb

• reverse_win_http.rb

• …

attl4s.github.io

MSF Stagers (cont.)

• Example – reverse_tcp_x64.rb (ref to footnotes link)

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/reverse_tcp_x64.rb

attl4s.github.io

Paranoid Mode

• Some MSF stagers (WinHTTP) support security features like Payload UUID
tracking and whitelisting with TLS pinning

https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/the-ins-and-outs-of-http-and-https-communications-in-meterpreter-and-metasploit-stagers.html

attl4s.github.io

MSF Staging Protocol

• Also Metasploit’s staging process explained by the great OJ Reeves:

https://buffered.io/posts/staged-vs-stageless-handlers/

attl4s.github.io

MSF Stageless

• Remember Meterpreter’s Configuration Block?
• One Session configuration block

• One or more Transport Configuration blocks, followed by a terminator

• One or more Extension Configuration blocks, followed by a terminator

• MSF can include extensions as Extension blocks within the Configuration Block

• With the address of the Configuration Block in memory, Metsrv is able to find and
initialise those extensions

attl4s.github.io

Shellcode
Exploit/

Executable
Staging
Process

Metsrv
Reflective
Loading

Metsrv

Extension2
Reflective
Loading

Extension1
Reflective
Loading

…

Extension2Extension1 …

Moving Forward

attl4s.github.io

Reflective Loading

attl4s.github.io

Recap

• Meterpreter components are reflective DLLs
• Metsrv + extensions

• Reflective DLLs are intended to be loaded from memory
• As opposed to regular DLLs/PEs, which are designed to be loaded from disk

• A reflective DLL is just a regular DLL built together with a “portable” PE loader
• The loader is in charge of loading the whole DLL into memory

attl4s.github.iohttps://github.com/stephenfewer/ReflectiveDLLInjection

You can see this as a custom implementation of LoadLibrary(), avoiding the module-on-disk
limitation

attl4s.github.io

Reflective Loader

rDLLDLL
Compile

Reflective
Loader

attl4s.github.io

Reflective Loader

rDLL

Process Memory

1

2

3

DLL
Entrypoint

attl4s.github.io

Recap (cont.)

• Traditional reflective DLLs implement the loader functionality as an exported
function

• These DLLs cannot be run like shellcode by executing position 0
• Instead, the loader function must be located and executed

• To address this limitation, frameworks like MSF leverage bootstrap code
• With the bootstrap, a reflective DLL can be executed like shellcode

attl4s.github.io

Reflective Loader

rDLL

Process Memory

1

4

Bootstrap

2 DLL
Entrypoint

3

attl4s.github.io

Recap (cont.)

• The main goal of this bootstrap is executing the reflective loader export, although
it may have additional purposes

• For example, we’ve seen this with Metsrv’s bootstrap

1. Executes Reflective Loader export, which loads Metsrv DLL in memory

2. Executes Metsrv’s dllmain with a pointer to the Config Block, which holds all user-defined
configuration (what Metsrv needs to create a new Meterpreter session)

attl4s.github.io

Reflective Loading

• All this is nice but… what does the Reflective Loader actually do?

• The only things we know so far…

1. The loader is built into the target DLL we want to load

2. It is in charge of loading such DLL into memory à la LoadLibrary()

3. Everybody talks about reflective DLLs and loaders on the Internet

attl4s.github.io

Traditional

Reflective DLL Loading

attl4s.github.io

Disclaimer

• Don't let these slides fool you!
• I am not a programmer nor an expert on this area

• I might have done wrong assumptions in certain things

• This section is only intended as an overview

• Largely based on Raphael Mudge’s explanation from:
• “Red Team Operations with Cobalt Strike”

attl4s.github.iohttps://www.exploit-db.com/docs/english/13007-reflective-dll-injection.pdf

attl4s.github.ioRed Team Ops with Cobalt Strike (4 of 9): Weaponization

Reflective Loader

rDLL

Process Memory

1. Reflective Loader is executed

attl4s.github.ioRed Team Ops with Cobalt Strike (4 of 9): Weaponization

rDLL

Process Memory

MZ

2. Moves backwards from current position until finding
MS-DOS header (beginning of the DLL)

• This is done as the whole DLL is going to be
copied into new memoryReflective Loader

attl4s.github.ioRed Team Ops with Cobalt Strike (4 of 9): Weaponization

rDLL

Process Memory

3. Resolves any functions needed for the loading process

• Locates PEB and *typically* finds Kernel32.dll in
memory

• *Typically* gets LoadLibrary() and GetProcAddress()
addresses from kernel32’s EAT

• Finds or resolves any other functions needed by the
implementation

Kernel32

Export Table

PEB

RL

1

2

attl4s.github.ioRed Team Ops with Cobalt Strike (4 of 9): Weaponization

Reflective Loader

rDLL

Process Memory

4. Prepares new memory for the DLL

• E.g. with VirtualAlloc

• Size is typically based on
OptionalHeader -> SizeOfImage

attl4s.github.ioRed Team Ops with Cobalt Strike (4 of 9): Weaponization

rDLL

Process Memory

5. Copies the original DLL into the new
memory (i.e. headers and sections)DLL

Reflective Loader

attl4s.github.ioRed Team Ops with Cobalt Strike (4 of 9): Weaponization

rDLL

Process Memory

6. Loads all dependencies and updates
the IAT of the memory injected DLL

• Browses original IAT and
loads/resolves all DLLs/functions

• Updates data on the new DLL
Import Address Table

Import Address Table

DLL
Reflective Loader

• LoadLibraryA
• GetProcAddress

attl4s.github.ioRed Team Ops with Cobalt Strike (4 of 9): Weaponization

Process Memory

7. Relocations

• DLL will probably not be loaded at the
expected base address

• “Hardcoded” addresses broken

• Gets ImageBase from OptionalHeader,
and calculates the delta with the real
base address of the DLL

• Fixes relocations using the calculated
offset

rDLL DLL

Relocation Table

Relocation Table

PE

2

Delta = real_ImageBase - nt->OptionalHeader.ImageBase

attl4s.github.ioRed Team Ops with Cobalt Strike (4 of 9): Weaponization

rDLL

Process Memory

8. Calls the entry point!

Entrypoint

DLL
Reflective Loader

attl4s.github.io

Your DLL has been loaded without touching disk!

attl4s.github.io

Improvements to the

Original Recipe

attl4s.github.io

Limitations

• Stephen Fewer’s technique is awesome, but has two big limitations:

• It requires the source code of the DLL (to build the loader into it)

• It only supports calling the entry point of the injected DLL (i.e. DllMain)

• How could these be addressed?

https://mez0.cc/posts/exploring-dll-loads/

attl4s.github.io

Improvements

• Different people have made improvements to this technique, but – from my quick
investigation – two stand out:

1. Dan Staples with “An Improved Reflective DLL Injection Technique”
• Fixes the only-entry-point limitation

2. Nick Landers with “sRDI – Shellcode Reflective DLL Injection”
• Fixes the source code limitation

https://mez0.cc/posts/exploring-dll-loads/

attl4s.github.io

Dan Staples

• Dan Staples’ approach is a clear example of “bootstrap code can have additional
purposes” (refer to Slide 150)

https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html

attl4s.github.io

Dan Staples (cont.)

• Dan changed the Loader function to support new parameters:
1. Export name in hashed format

2. Arguments for the export

• This allowed not only the execution of the entry point (i.e. DllMain), but also an
arbitrary export
• Note that Microsoft recommends not working from DllMain!

• How was this new data passed to the Loader? With the bootstrap

https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html

attl4s.github.io

Nick Landers

• Nick and his team went ahead and wrote the reflective loader piece as shellcode
• Released around Aug 2017

• They also leveraged the approach shown by Dan Staples
• Using the bootstrap to pass a an export name and arguments to the Loader

• The result: sRDI
• Does not require source code (because the loader is shellcode)

• Can execute an arbitrary export with user-defined arguments

https://www.netspi.com/blog/technical/adversary-simulation/srdi-shellcode-reflective-dll-injection/

attl4s.github.iohttps://github.com/monoxgas/sRDI

attl4s.github.io

Other Interesting Approaches

attl4s.github.io

Cobalt Strike – UDRL

• One of the most interesting aspects of Cobalt Strike is its malleability and ability
to automate things
• Sleep + Aggressor Script

• Cobalt Strike 4.4 added support for using customized reflective loaders for
beacon payloads

• How it works?

https://www.cobaltstrike.com/blog/cobalt-strike-4-4-the-one-with-the-reconnect-button/

attl4s.github.io

Cobalt Strike – UDRL (cont.)

• Users have to write their custom loaders in C, in such a way that shellcode can be
extracted from the resulting compiled file

• (Not working anymore) http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html

• (Copy of the previous post) https://phasetw0.com/malware/writing-optimized-windows-shellcode-in-c/

• (This is also the approach Nick Landers and its team employed for developing
sRDI’s loader shellcode)

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_user-defined-rdll.htm

attl4s.github.io

Cobalt Strike – UDRL (cont.)

• The extracted shellcode is then patched into the Beacon reflective DLL, at the
ReflectiveLoader export position

• Cobalt Strike offers Aggressor Script functions to ease the automation of this
process

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_user-defined-rdll.htm

attl4s.github.io

Cobalt Strike – UDRL (cont.)

• Since the release of this feature, various interesting loaders have been released
with different approaches and capabilities

• Some of them:

• (@ilove2pwn_) https://github.com/benheise/TitanLdr

• (@0xBoku) https://github.com/boku7/BokuLoader

• (@kyleavery_) https://github.com/kyleavery/AceLdr

• (@C5pider) https://github.com/Cracked5pider/KaynStrike

attl4s.github.io

Cobalt Strike – UDRL (cont.)

• I highly recommend reading Bobby Cooke’s “Defining the Cobalt Strike Reflective
Loader” post (and future posts in this series)
• https://securityintelligence.com/posts/defining-cobalt-strike-reflective-loader/

• Great explanations and details on the Reflective Loading subject, from a
developer point of view

• BokuLoader link again:
• https://github.com/boku7/BokuLoader

https://twitter.com/0xBoku

attl4s.github.io

Donut

• Initially focused on providing in-memory execution of .NET programs as shellcode
• Developed by Odzhan (@modexpblog) and TheWover

• First version was released on May 2019

• Evolved over time to provide - among other things - great reflective PE execution capabilities
(both DLLs and EXEs!)
• Starting from version 0.9.2 - Bear Claw

• Version 1.0 was recently released (March 2023) with multiple improvements mostly focused on
the reflective PE execution side!

https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/

attl4s.github.io

NightHawk – Dependency Loading

• Finally, worth mentioning how NightHawk has significantly improved dependency
loading in their reflective loading process

https://www.mdsec.co.uk/2022/11/nighthawk-0-2-1-haunting-blue/

attl4s.github.io

Acknowledgements

attl4s.github.io

Standing on the Shoulders of Giants

Thanks to all links and people referred across the slides

attl4s.github.io

Standing on the Shoulders of Giants

Key resources

• Metasploit docs and open source repositories
• https://docs.metasploit.com/

• https://github.com/rapid7/metasploit-framework

• https://github.com/rapid7/metasploit-payloads

• Skape’s paper
• http://www.hick.org/code/skape/papers/meterpreter.pdf

• OJ Reeves’ stuff
• https://buffered.io/

• Raphael Mudge’s stuff
• https://www.youtube.com/@DashnineMedia

attl4s.github.io

Standing on the Shoulders of Giants

Special thanks (for reviewing the presentation and providing great feedback)

• Manuel León (@ElephantSe4l)

• Spencer McIntyre (@zeroSteiner)

• Borja Merino (@BorjaMerino)

Is anybody still awake?

MANY THANKS!
Any Question?

	Introduction
	Slide 1: UNDERSTANDING A PAYLOAD’S LIFE Featuring Meterpreter & other guests
	Slide 2: # ATTL4S
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Agenda

	Needing an Advanced Payload
	Slide 7
	Slide 8: Introduction
	Slide 9: Meterpreter Origins
	Slide 10: Meterpreter Origins (cont.)
	Slide 11: The Meta-interpreter
	Slide 12: The Meta-interpreter (cont.)
	Slide 13: The Meta-interpreter (cont.)
	Slide 14: Components
	Slide 15: Extensions
	Slide 16: Loading Extensions (cont.)
	Slide 17: High-level Architecture
	Slide 18
	Slide 19: Modern Needs
	Slide 20: Modern Needs (cont.)
	Slide 21: Modern Needs (cont.)
	Slide 22: Modern Needs (cont.)
	Slide 23
	Slide 24
	Slide 25

	About Terminology
	Slide 26
	Slide 27: Exploit & Payload
	Slide 28
	Slide 29: Exploit & Payload (cont.)
	Slide 30: In-memory Payloads
	Slide 31: Reflective DLL Injection?
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Interesting Fact
	Slide 38: Interesting Fact (cont.)
	Slide 39: Payload Generation

	Payload Generation
	Slide 40
	Slide 41: Introduction
	Slide 42: Introduction (cont.)
	Slide 43
	Slide 44: Metflective DLLpreter
	Slide 45: Building Meterpreter
	Slide 46: Building Meterpreter (cont.)
	Slide 47
	Slide 48
	Slide 49: Using Reflective DLLs
	Slide 50: Dissecting Metsrv
	Slide 51: Dissecting Metsrv (cont.)
	Slide 52: Turning Into Shellcode
	Slide 53
	Slide 54: Bootstrap - “invoke_metsrv”
	Slide 55: Bootstrap - DOS Header Patching
	Slide 56: Metsrv not Patched
	Slide 57: Metsrv Patched
	Slide 58: So…
	Slide 59: Configuration Block
	Slide 60
	Slide 61: Configuration Block (cont.)
	Slide 62: Config Block Appended
	Slide 63: What Does it Contain?
	Slide 64: The Bootstrap Again!
	Slide 65: Bootstrap - “invoke_metsrv”
	Slide 66: Custom “DllMain” - RDI
	Slide 67: Custom “DllMain” - Metsrv
	Slide 68: Session Opened!
	Slide 69: Bonus: MSF Modules
	Slide 70: Bonus: JuicyPotato Module
	Slide 71
	Slide 72: Dynamic Building
	Slide 73
	Slide 74: Havoc Artifacts
	Slide 75: Havoc Shellcode
	Slide 76
	Slide 77: A Note About Commercial Tools
	Slide 78
	Slide 79: Payload Decorations
	Slide 80: Example - MSF Encoders
	Slide 81: Example - MSF Encoders (cont.)
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Example - SGN
	Slide 87: Example - SGN (cont.)
	Slide 88: Example – Nighthawk’s Keying
	Slide 89: Example - CS’ Malleable PE
	Slide 90: Example - CS’ Malleable PE (cont.)
	Slide 91

	Payload Executables
	Slide 92
	Slide 93: Introduction
	Slide 94: Automation
	Slide 95: Templates
	Slide 96: EXE Class
	Slide 97
	Slide 98: Scripts
	Slide 99: Scripts (cont.)
	Slide 100
	Slide 101: Compiled Artifacts
	Slide 102: String Substitution
	Slide 103
	Slide 104
	Slide 105: String Substitution (cont.)
	Slide 106
	Slide 107
	Slide 108: PE Struct Manipulation
	Slide 109
	Slide 110
	Slide 111: A Bit of a Mess
	Slide 112: A Bit of a Mess (cont.)
	Slide 113: A Note About Formats
	Slide 114
	Slide 115: The Artifact Kit
	Slide 116: The Artifact Kit (cont.)
	Slide 117: The Artifact Kit (cont.)
	Slide 118: Dynamic Building
	Slide 119: Dynamic Building (cont.)
	Slide 120: Independent Generators
	Slide 121: So...

	Payload Staging
	Slide 122
	Slide 123: Execution Restrictions
	Slide 124: Staged Execution
	Slide 125: Staged Execution (cont.)
	Slide 126: Stageless Execution
	Slide 127: So…
	Slide 128
	Slide 129: When Staged?
	Slide 130: When Staged? (cont.)
	Slide 131: When Staged? (cont.)
	Slide 132: Useful Links
	Slide 133: When Stageless?
	Slide 134
	Slide 135: Back to Meterpreter
	Slide 136: Staged Execution - Example
	Slide 137: Back to Meterpreter (cont.)
	Slide 138: Remember!
	Slide 139
	Slide 140: What’s Being Staged?
	Slide 141
	Slide 142: What’s Being Staged? (cont.)
	Slide 143: MSF Stagers
	Slide 144: MSF Stagers (cont.)
	Slide 145: Paranoid Mode
	Slide 146: MSF Staging Protocol
	Slide 147: MSF Stageless
	Slide 148: Moving Forward

	Reflective Loading
	Slide 149
	Slide 150: Recap
	Slide 151
	Slide 152
	Slide 153
	Slide 154: Recap (cont.)
	Slide 155
	Slide 156: Recap (cont.)
	Slide 157: Reflective Loading
	Slide 158
	Slide 159: Disclaimer
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171: Limitations
	Slide 172: Improvements
	Slide 173: Dan Staples
	Slide 174: Dan Staples (cont.)
	Slide 175: Nick Landers
	Slide 176
	Slide 177
	Slide 178: Cobalt Strike – UDRL
	Slide 179: Cobalt Strike – UDRL (cont.)
	Slide 180: Cobalt Strike – UDRL (cont.)
	Slide 181: Cobalt Strike – UDRL (cont.)
	Slide 182: Cobalt Strike – UDRL (cont.)
	Slide 183: Donut
	Slide 184: NightHawk – Dependency Loading

	Acknowledgements
	Slide 185
	Slide 186: Standing on the Shoulders of Giants
	Slide 187: Standing on the Shoulders of Giants
	Slide 188: Standing on the Shoulders of Giants
	Slide 189

